Brock Biology of Microorganisms, Books a la Carte Edition (14th Edition)
Brock Biology of Microorganisms, Books a la Carte Edition (14th Edition)
14th Edition
ISBN: 9780321928351
Author: MADIGAN, Michael T., Martinko, John M., Brock, Thomas, Bender, Kelly S., BUCKLEY, Daniel H., Stahl, David A.
Publisher: PEARSON
Question
Book Icon
Chapter 13.9, Problem 1MQ
Summary Introduction

The oxidation is any chemical reaction which involving the moving of electrons. Specially, it means the substance that provides away electrons is oxidized. An example, an iron reacts with the oxygen, it forms a chemical called as rust because it has been oxidized and the oxygen has been reduced. The reduction is the opposite of the oxidation and reduction reaction is always arises together with an oxidation reaction.

Blurred answer
Students have asked these similar questions
Why does biological Fe2+ oxidation under oxic conditions occurmainly at acidic pH?
With H2 as electron donor, why is reduction of Fe3+ a morefavorable reaction than reduction of fumarate?
What is the ATP yield from the oxidation of one molecule of nervonic acid?

Chapter 13 Solutions

Brock Biology of Microorganisms, Books a la Carte Edition (14th Edition)

Ch. 13.4 - What is the key role of light energy in the...Ch. 13.4 - What evidence is there that anoxygenic and...Ch. 13.5 - Prob. 1MQCh. 13.5 - How much NADPH and ATP is required to make one...Ch. 13.5 - Contrast autotrophy in the following phototrophs:...Ch. 13.6 - Prob. 1MQCh. 13.6 - Prob. 2MQCh. 13.7 - What enzyme is required for hydrogen bacteria to...Ch. 13.7 - Why is reverse electron flow unnecessary in H2...Ch. 13.8 - Prob. 1MQCh. 13.8 - In terms of intermediates, how does the Sox system...Ch. 13.9 - Prob. 1MQCh. 13.9 - What is the function of rusticyanin and where is...Ch. 13.9 - How can Fe2+ be oxidized under anoxic conditions?Ch. 13.10 - Prob. 1MQCh. 13.10 - Prob. 2MQCh. 13.10 - Prob. 3MQCh. 13.11 - Prob. 1MQCh. 13.11 - Why is acetate formation in fermentation...Ch. 13.12 - How can homo- and heterofermentative metabolism be...Ch. 13.12 - Butanediol production leads to greater ethanol...Ch. 13.13 - Compare the mechanisms for energy conservation in...Ch. 13.13 - What type of substrates are fermented by...Ch. 13.13 - What are the substrates for the Clostridium...Ch. 13.14 - Why does Propionigenium modestum require sodium...Ch. 13.14 - Of what benefit is the organism Oxalobacter to...Ch. 13.14 - Prob. 3MQCh. 13.15 - Give an example of interspecies H2 transfer. Why...Ch. 13.15 - Why can a pure culture of Syntrophomonas grow on...Ch. 13.16 - How does aerobic respiration differ from anaerobic...Ch. 13.16 - Prob. 2MQCh. 13.17 - For Escherichia coli, why is more energy released...Ch. 13.17 - How do the products of NO3 reduction differ...Ch. 13.17 - Where is the dissimilative nitrate reductase found...Ch. 13.18 - How is SO42 converted to SO32 during dissimilative...Ch. 13.18 - Contrast the growth of Desulfovibrio on H2 versus...Ch. 13.18 - Give an example of sulfur disproportionation.Ch. 13.19 - Prob. 1MQCh. 13.19 - Prob. 2MQCh. 13.19 - Prob. 3MQCh. 13.20 - Which coenzymes function as C1 carriers in...Ch. 13.20 - In methanogens growing on H2 + CO2, how is carbon...Ch. 13.20 - How is ATP made in methanogenesis when the...Ch. 13.21 - Prob. 1MQCh. 13.21 - What is reductive dechlorination and why is it...Ch. 13.21 - How does anaerobic glucose catabolism differ in...Ch. 13.22 - How do monooxygenases differ in function from...Ch. 13.22 - What is the final product of catabolism of a...Ch. 13.22 - Prob. 3MQCh. 13.23 - When using CH4 as electron donor, why is...Ch. 13.23 - Prob. 2MQCh. 13.23 - In which two ways does the ribulose monophosphate...Ch. 13.24 - Prob. 1MQCh. 13.24 - How is hexane oxygenated during anoxic catabolism?Ch. 13.24 - Prob. 3MQCh. 13 - Prob. 1RQCh. 13 - Prob. 2RQCh. 13 - What accessory pigments are present in...Ch. 13 - Prob. 4RQCh. 13 - Prob. 5RQCh. 13 - Prob. 6RQCh. 13 - REVIEW QUESTIONS 7. What two enzymes are unique to...Ch. 13 - Prob. 8RQCh. 13 - Prob. 9RQCh. 13 - QWhich inorganic electron donors are used by the...Ch. 13 - Prob. 11RQCh. 13 - Define the term substrate-level phosphorylation:...Ch. 13 - Prob. 13RQCh. 13 - Prob. 14RQCh. 13 - Prob. 15RQCh. 13 - Prob. 16RQCh. 13 - Prob. 17RQCh. 13 - Prob. 18RQCh. 13 - Compare and contrast acetogens with methanogens in...Ch. 13 - Compare and contrast ferric iron reduction with...Ch. 13 - How do monooxygenases differ from dioxygenases in...Ch. 13 - Prob. 22RQCh. 13 - Prob. 23RQCh. 13 - Prob. 1AQCh. 13 - The growth rate of the phototrophic purple...Ch. 13 - Prob. 3AQCh. 13 - A fatty acid such as butyrate cannot be fermented...Ch. 13 - When methane is made from CO2 (plus H2) or from...
Knowledge Booster
Background pattern image
Recommended textbooks for you
Text book image
Human Anatomy & Physiology (11th Edition)
Biology
ISBN:9780134580999
Author:Elaine N. Marieb, Katja N. Hoehn
Publisher:PEARSON
Text book image
Biology 2e
Biology
ISBN:9781947172517
Author:Matthew Douglas, Jung Choi, Mary Ann Clark
Publisher:OpenStax
Text book image
Anatomy & Physiology
Biology
ISBN:9781259398629
Author:McKinley, Michael P., O'loughlin, Valerie Dean, Bidle, Theresa Stouter
Publisher:Mcgraw Hill Education,
Text book image
Molecular Biology of the Cell (Sixth Edition)
Biology
ISBN:9780815344322
Author:Bruce Alberts, Alexander D. Johnson, Julian Lewis, David Morgan, Martin Raff, Keith Roberts, Peter Walter
Publisher:W. W. Norton & Company
Text book image
Laboratory Manual For Human Anatomy & Physiology
Biology
ISBN:9781260159363
Author:Martin, Terry R., Prentice-craver, Cynthia
Publisher:McGraw-Hill Publishing Co.
Text book image
Inquiry Into Life (16th Edition)
Biology
ISBN:9781260231700
Author:Sylvia S. Mader, Michael Windelspecht
Publisher:McGraw Hill Education