
In Fig. 14-32, an open tube of length L = 1.8 m and cross-sectional area A = 4.6 cm2 is fixed to the top of a cylindrical barrel of diameter D = 1.2m and height H = 1.8 m. The barrel and tube are filled with water (to the top of the tube). Calculate the ratio of the hydrostatic force on the bottom of the barrel to the gravitational force on the water contained in the barrel. Why is that ratio not equal to 1.0? (You need not consider the atmospheric pressure.)
Figure 14-32 Problem 18.

Want to see the full answer?
Check out a sample textbook solution
Chapter 14 Solutions
Fundamentals of Physics Extended
Additional Science Textbook Solutions
Campbell Essential Biology with Physiology (5th Edition)
Concepts of Genetics (12th Edition)
Biology: Life on Earth with Physiology (11th Edition)
Cosmic Perspective Fundamentals
Human Anatomy & Physiology (2nd Edition)
Campbell Biology (11th Edition)
- Answer the assignment 3 question and show step-by-step solution. This is from Chapter 4 off of the book, "The Essential Cosmic Perspective" 8th edition by Bennett, Donahue, Schneider, Voit. I provided some helpful notes to help with the solution.arrow_forwardAnswer the assignment 1 question and show step-by-step solution. This is from Chapter 4 off of the book, "The Essential Cosmic Perspective" 8th edition by Bennett, Donahue, Schneider, Voit. I provided some helpful notes to help with the solution.arrow_forwardAnswer the assignment 4 question and show step-by-step solution. This is from Chapter 4 off of the book, "The Essential Cosmic Perspective" 8th edition by Bennett, Donahue, Schneider, Voit. I provided some helpful notes to help with the solution.arrow_forward
- Answer the assignment 2 question and show step-by-step solution. This is from Chapter 4 off of the book, "The Essential Cosmic Perspective" 8th edition by Bennett, Donahue, Schneider, Voit. I provided some helpful notes to help with the solution.arrow_forwardA small block of mass m = 2 kg is fired with an initial speed v₁ = 9 m/s along a horizontal section of frictionless track, as shown in the top portion of the figure. The block then moves along the frictionless semicircular vertical track of radius R = 0.5m. Part 1 m ·L· Мк R Determine the force exerted by the track on the block at point A. F = number (rtol=0.05, atol=1e-08) N ? Part 2 The bottom of the track consists of a horizontal section (L = 11 m) with friction. Determine the coefficient of kinetic friction between the block and the bottom portion of the track if the block just makes it to point B before coming to rest. μk = number (rtol=0.05, atol=1e-08)arrow_forwardA small block of mass m = 4.75 kg is fired with an initial speed v₁ = 7 m/s along a horizontal section of frictionless track, as shown in the top portion of the figure. The block then moves along the frictionless semicircular vertical track of radius R = 1m. B Part 1 m -L Мік R Determine the force exerted by the track on the block at point A. F = number (rtol=0.05, atol=1e-08) N Part 2 A The bottom of the track consists of a horizontal section (L = 10 m) with friction. Determine the coefficient of kinetic friction between the block and the bottom portion of the track if the block just makes it to point B before coming to rest. μk = number (rtol=0.05, atol=1e-08)arrow_forward
- A small block of mass m = 4.75 kg is fired with an initial speed v₁ = 7 m/s along a horizontal section of frictionless track, as shown in the top portion of the figure. The block then moves along the frictionless semicircular vertical track of radius R = 1m. B Part 1 m -L Мік R Determine the force exerted by the track on the block at point A. F = number (rtol=0.05, atol=1e-08) N Part 2 A The bottom of the track consists of a horizontal section (L = 10 m) with friction. Determine the coefficient of kinetic friction between the block and the bottom portion of the track if the block just makes it to point B before coming to rest. μk = number (rtol=0.05, atol=1e-08)arrow_forwardShown below are two carts connected by a cord that passes over a small frictionless pulley. Each cart rolls freely with negligible friction. 1. Calculate the magnitude of the acceleration of each cart 2. Calculate the magnitude of the tension in the cord. 10 kg 37° ΟΠΟ 53° 15 kgarrow_forwardAn object with a mass of 10.0 kg is placed on a rough horizontal table. The object is then connected to a cable that passes over a pulley and is fastened to a hanging object with a mass of 5.00 kg. 1. What is the minimum force of friction required to keep the objects in equilibrium? 2. What is the coefficient of static friction between m₁ and the table? Must show complete and concise work. m₁ m2arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning





