   Chapter 14, Problem 32RE Mathematical Applications for the ...

11th Edition
Ronald J. Harshbarger + 1 other
ISBN: 9781305108042

Solutions

Chapter
Section Mathematical Applications for the ...

11th Edition
Ronald J. Harshbarger + 1 other
ISBN: 9781305108042
Textbook Problem

Cost Suppose a company has two separate plants that manufacture the same item. Suppose x is the amount produced at plant I and y is the amount produced at plant II. If the total cost function for the two plants is C ( x , y ) = 22 , 500 − 12 x − 30 y + 0.03 x 2 + 0.01 y 2 find the production allocation that minimizes the company’s total cost.

To determine

To calculate: The production allocation that minimizes the company’s total cost. Suppose a company has two separate plants that manufacture the same item. Suppose that x is the amount produced at plant I and y is the amount produced at plant II. The total cost function for the two plants C(x,y)=22,50012x30y+0.03x2+0.01y2.

Explanation

Given Information:

The total cost function for the two plants C(x,y)=22,50012x30y+0.03x2+0.01y2.

Formula used:

To calculate relative maxima and minima of the z=f(x,y),

(1) Find the partial derivatives zx and zy.

(2) Find the critical points, that is, the point(s) that satisfy zx=0 and zy=0.

(3) Then find all the second partial derivatives and evaluate the value of D at each critical point, where D=(zxx)(zyy)(zxy)2=2zx22zy2(2zxy)2.

(a) If D>0, then relative minimum occurs if zxx>0 and relative maximum occurs if zxx<0.

(b) If D<0, then neither a relative maximum nor a relative minimum occurs.

For a function f(x,y), the partial derivative of f with respect to x is calculated by taking the derivative of f(x,y) with respect to x and keeping the other variable y constant and the partial derivative of f with respect to y is calculated by taking the derivative of f(x,y) with respect to y and keeping the other variable x constant. The partial derivative of f with respect to x is denoted by fx and with respect to y is denoted by fy.

For a function z(x,y), the second partial derivative,

(1) When both derivatives are taken with respect to x is zxx=2zx2=x(zx).

(2) When both derivatives are taken with respect to y is zyy=2zy2=y(zy).

(3) When first derivative is taken with respect to x and second derivative is taken with respect to y is zxy=2zyx=y(zx).

(4) When first derivative is taken with respect to y and second derivative is taken with respect to x is zyx=2zxy=x(zy).

Power of x rule for a real number n is such that, if f(x)=xn then f(x)=nxn1.

Chain rule for function f(x)=u(v(x)) is f(x)=u(v(x))v(x).

Constant function rule for a constant c is such that, if f(x)=c then f(x)=0.

Coefficient rule for a constant c is such that, if f(x)=cu(x), where u(x) is a differentiable function of x, then f(x)=cu(x).

Calculation:

Consider the problem, the total cost function for the two plants C(x,y)=22,50012x30y+0.03x2+0.01y2.

The provided function is C(x,y)=22,50012x30y+0.03x2+0.01y2.

Recall that, for a function f(x,y), the partial derivative of f with respect to x is calculated by taking the derivative of f(x,y) with respect to x and keeping the other variable y constant and the partial derivative of f with respect to y is calculated by taking the derivative of f(x,y) with respect to y and keeping the other variable x constant

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started

Find more solutions based on key concepts 