BuyFindarrow_forward

Mathematical Applications for the ...

11th Edition
Ronald J. Harshbarger + 1 other
ISBN: 9781305108042

Solutions

Chapter
Section
BuyFindarrow_forward

Mathematical Applications for the ...

11th Edition
Ronald J. Harshbarger + 1 other
ISBN: 9781305108042
Textbook Problem

Cost Suppose a company has two separate plants that manufacture the same item. Suppose x is the amount produced at plant I and y is the amount produced at plant II. If the total cost function for the two plants is C ( x , y ) = 22 , 500 12 x 30 y + 0.03 x 2 + 0.01 y 2 find the production allocation that minimizes the company’s total cost.

To determine

To calculate: The production allocation that minimizes the company’s total cost. Suppose a company has two separate plants that manufacture the same item. Suppose that x is the amount produced at plant I and y is the amount produced at plant II. The total cost function for the two plants C(x,y)=22,50012x30y+0.03x2+0.01y2.

Explanation

Given Information:

The total cost function for the two plants C(x,y)=22,50012x30y+0.03x2+0.01y2.

Formula used:

To calculate relative maxima and minima of the z=f(x,y),

(1) Find the partial derivatives zx and zy.

(2) Find the critical points, that is, the point(s) that satisfy zx=0 and zy=0.

(3) Then find all the second partial derivatives and evaluate the value of D at each critical point, where D=(zxx)(zyy)(zxy)2=2zx22zy2(2zxy)2.

(a) If D>0, then relative minimum occurs if zxx>0 and relative maximum occurs if zxx<0.

(b) If D<0, then neither a relative maximum nor a relative minimum occurs.

For a function f(x,y), the partial derivative of f with respect to x is calculated by taking the derivative of f(x,y) with respect to x and keeping the other variable y constant and the partial derivative of f with respect to y is calculated by taking the derivative of f(x,y) with respect to y and keeping the other variable x constant. The partial derivative of f with respect to x is denoted by fx and with respect to y is denoted by fy.

For a function z(x,y), the second partial derivative,

(1) When both derivatives are taken with respect to x is zxx=2zx2=x(zx).

(2) When both derivatives are taken with respect to y is zyy=2zy2=y(zy).

(3) When first derivative is taken with respect to x and second derivative is taken with respect to y is zxy=2zyx=y(zx).

(4) When first derivative is taken with respect to y and second derivative is taken with respect to x is zyx=2zxy=x(zy).

Power of x rule for a real number n is such that, if f(x)=xn then f(x)=nxn1.

Chain rule for function f(x)=u(v(x)) is f(x)=u(v(x))v(x).

Constant function rule for a constant c is such that, if f(x)=c then f(x)=0.

Coefficient rule for a constant c is such that, if f(x)=cu(x), where u(x) is a differentiable function of x, then f(x)=cu(x).

Calculation:

Consider the problem, the total cost function for the two plants C(x,y)=22,50012x30y+0.03x2+0.01y2.

The provided function is C(x,y)=22,50012x30y+0.03x2+0.01y2.

Recall that, for a function f(x,y), the partial derivative of f with respect to x is calculated by taking the derivative of f(x,y) with respect to x and keeping the other variable y constant and the partial derivative of f with respect to y is calculated by taking the derivative of f(x,y) with respect to y and keeping the other variable x constant

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started

Chapter 14 Solutions

Show all chapter solutions add
Sect-14.1 P-10ESect-14.1 P-11ESect-14.1 P-12ESect-14.1 P-13ESect-14.1 P-14ESect-14.1 P-15ESect-14.1 P-16ESect-14.1 P-17ESect-14.1 P-18ESect-14.1 P-19ESect-14.1 P-20ESect-14.1 P-21ESect-14.1 P-22ESect-14.1 P-23ESect-14.1 P-24ESect-14.1 P-25ESect-14.1 P-27ESect-14.1 P-28ESect-14.1 P-29ESect-14.1 P-30ESect-14.1 P-31ESect-14.1 P-32ESect-14.1 P-33ESect-14.1 P-34ESect-14.1 P-35ESect-14.1 P-36ESect-14.1 P-37ESect-14.1 P-38ESect-14.2 P-1CPSect-14.2 P-2CPSect-14.2 P-3CPSect-14.2 P-4CPSect-14.2 P-5CPSect-14.2 P-1ESect-14.2 P-2ESect-14.2 P-3ESect-14.2 P-4ESect-14.2 P-5ESect-14.2 P-6ESect-14.2 P-7ESect-14.2 P-8ESect-14.2 P-9ESect-14.2 P-10ESect-14.2 P-11ESect-14.2 P-12ESect-14.2 P-13ESect-14.2 P-14ESect-14.2 P-15ESect-14.2 P-16ESect-14.2 P-17ESect-14.2 P-18ESect-14.2 P-19ESect-14.2 P-20ESect-14.2 P-21ESect-14.2 P-22ESect-14.2 P-23ESect-14.2 P-24ESect-14.2 P-25ESect-14.2 P-26ESect-14.2 P-27ESect-14.2 P-28ESect-14.2 P-29ESect-14.2 P-30ESect-14.2 P-31ESect-14.2 P-32ESect-14.2 P-33ESect-14.2 P-34ESect-14.2 P-35ESect-14.2 P-36ESect-14.2 P-37ESect-14.2 P-38ESect-14.2 P-39ESect-14.2 P-40ESect-14.2 P-41ESect-14.2 P-42ESect-14.2 P-43ESect-14.2 P-44ESect-14.2 P-45ESect-14.2 P-46ESect-14.2 P-47ESect-14.2 P-48ESect-14.2 P-49ESect-14.2 P-50ESect-14.2 P-51ESect-14.2 P-52ESect-14.2 P-53ESect-14.2 P-54ESect-14.2 P-55ESect-14.2 P-56ESect-14.3 P-1CPSect-14.3 P-2CPSect-14.3 P-3CPSect-14.3 P-1ESect-14.3 P-2ESect-14.3 P-3ESect-14.3 P-4ESect-14.3 P-5ESect-14.3 P-6ESect-14.3 P-7ESect-14.3 P-8ESect-14.3 P-9ESect-14.3 P-10ESect-14.3 P-11ESect-14.3 P-12ESect-14.3 P-13ESect-14.3 P-14ESect-14.3 P-15ESect-14.3 P-16ESect-14.3 P-17ESect-14.3 P-18ESect-14.3 P-19ESect-14.3 P-20ESect-14.3 P-21ESect-14.3 P-22ESect-14.3 P-23ESect-14.3 P-24ESect-14.3 P-25ESect-14.3 P-26ESect-14.3 P-27ESect-14.3 P-28ESect-14.3 P-29ESect-14.3 P-30ESect-14.4 P-1CPSect-14.4 P-2CPSect-14.4 P-3CPSect-14.4 P-4CPSect-14.4 P-1ESect-14.4 P-2ESect-14.4 P-3ESect-14.4 P-4ESect-14.4 P-5ESect-14.4 P-6ESect-14.4 P-7ESect-14.4 P-8ESect-14.4 P-9ESect-14.4 P-10ESect-14.4 P-11ESect-14.4 P-12ESect-14.4 P-13ESect-14.4 P-14ESect-14.4 P-15ESect-14.4 P-16ESect-14.4 P-17ESect-14.4 P-18ESect-14.4 P-19ESect-14.4 P-20ESect-14.4 P-21ESect-14.4 P-22ESect-14.4 P-23ESect-14.4 P-24ESect-14.4 P-25ESect-14.4 P-26ESect-14.4 P-27ESect-14.4 P-28ESect-14.4 P-29ESect-14.4 P-30ESect-14.4 P-31ESect-14.4 P-32ESect-14.4 P-34ESect-14.4 P-35ESect-14.4 P-36ESect-14.5 P-1CPSect-14.5 P-2CPSect-14.5 P-3CPSect-14.5 P-4CPSect-14.5 P-1ESect-14.5 P-2ESect-14.5 P-3ESect-14.5 P-4ESect-14.5 P-5ESect-14.5 P-6ESect-14.5 P-7ESect-14.5 P-8ESect-14.5 P-9ESect-14.5 P-10ESect-14.5 P-11ESect-14.5 P-12ESect-14.5 P-13ESect-14.5 P-14ESect-14.5 P-15ESect-14.5 P-16ESect-14.5 P-17ESect-14.5 P-18ESect-14.5 P-19ESect-14.5 P-20ESect-14.5 P-21ESect-14.5 P-22ESect-14.5 P-23ESect-14.5 P-24ESect-14.5 P-25ESect-14.5 P-26ECh-14 P-1RECh-14 P-2RECh-14 P-3RECh-14 P-4RECh-14 P-5RECh-14 P-6RECh-14 P-7RECh-14 P-8RECh-14 P-9RECh-14 P-10RECh-14 P-11RECh-14 P-12RECh-14 P-13RECh-14 P-14RECh-14 P-15RECh-14 P-16RECh-14 P-17RECh-14 P-18RECh-14 P-19RECh-14 P-20RECh-14 P-21RECh-14 P-22RECh-14 P-23RECh-14 P-24RECh-14 P-25RECh-14 P-26RECh-14 P-27RECh-14 P-28RECh-14 P-29RECh-14 P-30RECh-14 P-31RECh-14 P-32RECh-14 P-33RECh-14 P-34RECh-14 P-35RECh-14 P-36RECh-14 P-1TCh-14 P-2TCh-14 P-3TCh-14 P-4TCh-14 P-5TCh-14 P-6TCh-14 P-7TCh-14 P-8TCh-14 P-9TCh-14 P-10T

Additional Math Solutions

Find more solutions based on key concepts

Show solutions add

Show by means of an example that limxa[f(x)+g(x)] may exist even though neither limxaf(x) nor limxag(x) exists....

Applied Calculus for the Managerial, Life, and Social Sciences: A Brief Approach

Find the mean, median, and mode for the following sample of scores: 4, 5, 2, 7, 1, 3, 5

Statistics for The Behavioral Sciences (MindTap Course List)

Simplify the expressions in Exercises 97106. x3/2x5/2

Finite Mathematics and Applied Calculus (MindTap Course List)

Solve each equation and check: 2(y3)=4+(y14)

Elementary Technical Mathematics

Sometimes, Always, or Never: If {an} is increasing and bounded above, then {an} converges.

Study Guide for Stewart's Single Variable Calculus: Early Transcendentals, 8th