   Chapter 14.4, Problem 24E Mathematical Applications for the ...

11th Edition
Ronald J. Harshbarger + 1 other
ISBN: 9781305108042

Solutions

Chapter
Section Mathematical Applications for the ...

11th Edition
Ronald J. Harshbarger + 1 other
ISBN: 9781305108042
Textbook Problem

Production Suppose that x units of one input and y units of a second input result in P   =   40 x +   50 y   −   x 2 −   y 2 −   x y units of a product. Determine the inputs x and y that will maximize P. What is the maximum production?

To determine

To calculate: The inputs x and y that will maximize P and the maximum production. Suppose that x units of one input and y units of second input result in P=40x+50yx2y2xy units of a product.

Explanation

Given Information:

The provided function is P=40x+50yx2y2xy.

Formula used:

To calculate relative maxima and minima of the z=f(x,y),

(1) Find the partial derivatives zx and zy.

(2) Find the critical points, that is, the point(s) that satisfy zx=0 and zy=0.

(3) Then find all the second partial derivatives and evaluate the value of D at each critical point, where D=(zxx)(zyy)(zxy)2=2zx22zy2(2zxy)2.

(a) If D>0, then relative minimum occurs if zxx>0 and relative maximum occurs if zxx<0.

(b) If D<0, then neither a relative maximum nor a relative minimum occurs.

For a function f(x,y), the partial derivative of f with respect to x is calculated by taking the derivative of f(x,y) with respect to x and keeping the other variable y constant and the partial derivative of f with respect to y is calculated by taking the derivative of f(x,y) with respect to y and keeping the other variable x constant. The partial derivative of f with respect to x is denoted by fx and with respect to y is denoted by fy.

For a function z(x,y), the second partial derivative,

(1) When both derivatives are taken with respect to x is zxx=2zx2=x(zx).

(2) When both derivatives are taken with respect to y is zyy=2zy2=y(zy).

(3) When first derivative is taken with respect to x and second derivative is taken with respect to y is zxy=2zyx=y(zx).

(4) When first derivative is taken with respect to y and second derivative is taken with respect to x is zyx=2zxy=x(zy).

Power of x rule for a real number n is such that, if f(x)=xn then f(x)=nxn1.

Constant function rule for a constant c is such that, if f(x)=c then f(x)=0.

Coefficient rule for a constant c is such that, if f(x)=cu(x), where u(x) is a differentiable function of x, then f(x)=cu(x).

Calculation:

Consider the problem, x units of one input and y units of second input result in P=40x+50yx2y2xy units of a product.

The provided function is P(x,y)=40x+50yx2y2xy.

Use the power of x rule for derivatives, the constant function rule, and the coefficient rule,

Thus,

Px=0402xy=0y=2x40y=402x

And,

Py=0502yx=0x+2y=50

Now, calculate value of x and y.

Substitute 402x for y in x+2y=50.

x+2(402x)=50x+804x=503x=30x=10

Since, y=402x, thus, y=402(10)=4020=20

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started 