
Applied Physics (11th Edition)
11th Edition
ISBN: 9780134159386
Author: Dale Ewen, Neill Schurter, Erik Gundersen
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 15, Problem 13RP
An ideal gas occupies a volume of 5.35 L at STP. What is its gauge pressure (in kPa) if the volume is halved and the temperature is increased by 45.5ºC?
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
E =
кедо
Xo
A continuous line of charge lies along the x axis, extending from x = +x to positive infinity. The line carries positive charge with a uniform linear charge density 10.
(a) What is the magnitude of the electric field at the origin? (Use the following as necessary: 10, Xo, and ke.)
(b) What is the direction of the electric field at the origin?
O O O O O O G
-y
+z
○ -z
+x
-x
+y
Include free body diagram
2 Spring 2025
-03
PITT
Calculate the acceleration of a skier heading down a 10.0° slope, assuming the coefficient of
cold coast at a constant velocity. You can neglect air resistance in both parts.
friction for waxed wood on wet snow fly 0.1 (b) Find the angle of the slope down which this skier
Given:
9 = ?
8=10°
4=0.1
Chapter 15 Solutions
Applied Physics (11th Edition)
Ch. 15.1 - Change 15C to K.Ch. 15.1 - Prob. 2PCh. 15.1 - Prob. 3PCh. 15.1 - Change 235 K to C.Ch. 15.1 - Prob. 5PCh. 15.1 - Prob. 6PCh. 15.1 - Prob. 7PCh. 15.1 - Change 375R to F.Ch. 15.1 - T=315 K, V=225 cm3, T=275 K, find V.Ch. 15.1 - T=615R, V=60.3 in3, T=455R, find V.
Ch. 15.1 - V=200 ft3, T=95F, V=250 ft3, find T.Ch. 15.1 - Prob. 12PCh. 15.1 - Some gas occupies a volume of 325 m3 at 41 C. What...Ch. 15.1 - Some oxygen occupies 275 in3 at 35C. Find its...Ch. 15.1 - Some methane occupies 1575 L at 45C. Find its...Ch. 15.1 - Some helium occupies 1200ft3 at 70F. At what...Ch. 15.1 - Some nitrogen occupies 14,300 cm3 at 25.6C. What...Ch. 15.1 - Some propane occupies 1270 cm2 at 18.0C. What is...Ch. 15.1 - Some carbon dioxide occupies 34.5 L at 49.0C. Find...Ch. 15.1 - Some oxygen occupies 28.7 ft3 at 11.0F. Find its...Ch. 15.1 - A balloon contains 26.0 L of hydrogen at 40.0F....Ch. 15.1 - Using Charles's law, determine the effect (a) on...Ch. 15.1 - If 38.0 L of hydrogen is heated to 110C and...Ch. 15.1 - Prob. 24PCh. 15.1 - A hot air balloon contains 147 m3 of air at 19.0C....Ch. 15.1 - A tank with 139 L of propane is cooled from 91.0C...Ch. 15.1 - A 2000 L fuel tank filled with propane at 21C is...Ch. 15.1 - A propane nurse tank is left on a job site...Ch. 15.1 - A propane tank now containing 250L of propane was...Ch. 15.1 - A tank with 500 L of propane is heated from 17.0C...Ch. 15.2 - V'=315 cm3, P=101 kPa, P'=85.0 kPa; find V.Ch. 15.2 - V=450L, V'=700L, P=750 kPa; find P'.Ch. 15.2 - V=76.0 m3, V'=139 m3, P'=41.0 kPa; find P.Ch. 15.2 - V=439 in3, P'=38.7 psi, P=47.1 psi; find V'.Ch. 15.2 - D=1.80 kg/m3, P=108 kPa, P'=125 kPa; find D'.Ch. 15.2 - Prob. 6PCh. 15.2 - P=51.0 psi, P'=65.3 psi, D'=0.231 lb/ft3; find D.Ch. 15.2 - Some air at 22.5 psi occupies 1400 in3. What is...Ch. 15.2 - Prob. 9PCh. 15.2 - Prob. 10PCh. 15.2 - Prob. 11PCh. 15.2 - Some oxygen has a density of 1.75 kg/m3 at normal...Ch. 15.2 - Some methane at 500 kPa gauge pressure occupies...Ch. 15.2 - Prob. 14PCh. 15.2 - Some nitrogen at 80.0 psi gauge pressure occupies...Ch. 15.2 - Prob. 16PCh. 15.2 - Prob. 17PCh. 15.2 - Some propane occupies 2.30 m3 at a gauge pressure...Ch. 15.2 - A quantity of oxygen at a gauge pressure of 20.0...Ch. 15.2 - Some air occupies 4.5 m3 at a gauge pressure of 46...Ch. 15.2 - Some oxygen at 87.6 psi (absolute) occupies 75.0...Ch. 15.2 - A gas at 300 kPa (absolute) occupies 40.0 m3. Find...Ch. 15.2 - A volume of 58.0 L of hydrogen is heated from 33C...Ch. 15.2 - Prob. 24PCh. 15.2 - A 2.00-L plastic bottle contains air at a pressure...Ch. 15.2 - Prob. 26PCh. 15.2 - A mass of 1.31 kg of neon is in a 3.00-m3...Ch. 15.2 - The air density in a tractor tire is 1.40 kg/m3 at...Ch. 15.2 - An unknown gas is in a tank at 13.3 kPa. (a) If...Ch. 15.3 - Use Vp=VPto find each quantity. (All pressures are...Ch. 15.3 - Use Vp=VP to find each quantity. (All pressures...Ch. 15.3 - Use Vp=VPto find each quantity. (All pressures are...Ch. 15.3 - Use Vp=VPto find each quantity. (All pressures are...Ch. 15.3 - Use Vp=VP to find each quantity. (All pressures...Ch. 15.3 - We have 600 in3 of oxygen at1500 psi at 65F. What...Ch. 15.3 - We have 800m3 of natural gas at 235 kPa at 30C....Ch. 15.3 - We have 1400 L of nitrogen at 135 kPa at 54C. What...Ch. 15.3 - An acetylene welding tank has a pressure of 2000...Ch. 15.3 - What is the new pressure in Problem 9 if the...Ch. 15.3 - An ideal gas occupies a volume of 5.00 L at STP....Ch. 15.3 - An ideal gas occupies a volume of 5.00 L at STP....Ch. 15.3 - Some propane occupies 2.00 m3 at18.0C at an...Ch. 15.3 - A balloon with volume 3200 mL of xenon gas is at a...Ch. 15.3 - A 7 85-L helium-filled balloon experiences a...Ch. 15 - Prob. 1RQCh. 15 - Prob. 2RQCh. 15 - Prob. 3RQCh. 15 - Prob. 4RQCh. 15 - Prob. 5RQCh. 15 - Prob. 6RQCh. 15 - Prob. 7RQCh. 15 - Prob. 8RQCh. 15 - Prob. 9RQCh. 15 - What causes the tendency of the volume and...Ch. 15 - What causes the tendency of the temperature of a...Ch. 15 - What causes the tendency of the pressure of a gas...Ch. 15 - A gas occupies 13.5 ft3 at 35.8F. What will the...Ch. 15 - A gas occupies 3.45 m3 at 18.5 C. What will the...Ch. 15 - Some hydrogen occupies 115 ft3 at 54.5F. What is...Ch. 15 - Some carbon dioxide occupies 45.3 L at 38.5C. What...Ch. 15 - Some propane occupies 145 cm3 at 12.4 C. What is...Ch. 15 - Some air at 276 kPa occupies 32.4 m3. What is its...Ch. 15 - Some helium at 17.5 psi gauge pressure occupies...Ch. 15 - Prob. 8RPCh. 15 - We have 435 in3 of nitrogen at 1340 psi gauge...Ch. 15 - We have 755 m3 of carbon dioxide at 344 kPa at...Ch. 15 - A welding tank has a gauge pressure of 1950 psi at...Ch. 15 - An ideal gas occupies a volume of 4.50 L at STP....Ch. 15 - An ideal gas occupies a volume of 5.35 L at STP....Ch. 15 - A volume of 1120 L of helium at 4000 Pa is heated...Ch. 15 - In a 47-cm-tall cylinder of radius 7.0 cm,...Ch. 15 - Fran purchases a 1.85-ft3, helium-filled Mylar...Ch. 15 - An automobile tire is filled to an air pressure of...Ch. 15 - A 15.0-cm-long cylinder has a movable piston with...Ch. 15 - A 0.0300-m3 steel tank containing helium is stored...Ch. 15 - A lightweight weather-collecting sensor is...
Additional Science Textbook Solutions
Find more solutions based on key concepts
How do you think a cell performing cellular respiration rids itself of the resulting CO2?
Campbell Biology (11th Edition)
1.1 Write a one-sentence definition for each of the following:
a. chemistry
b. chemical
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
The glycine cleavage system is a group of four enzymes that together catalyze the following reaction: glycine+T...
Organic Chemistry (8th Edition)
Why are BSL-4 suits pressurized? Why not just wear tough regular suits?
Microbiology with Diseases by Body System (5th Edition)
Name the components (including muscles) of the thoracic cage. List the contents of the thorax.
Human Physiology: An Integrated Approach (8th Edition)
Explain all answers clearly, with complete sentences and proper essay structure if needed. An asterisk (*) desi...
Cosmic Perspective Fundamentals
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- dry 5. (a) When rebuilding her car's engine, a physics major must exert 300 N of force to insert a c piston into a steel cylinder. What is the normal force between the piston and cyli=030 What force would she have to exert if the steel parts were oiled? k F = 306N 2 =0.03 (arrow_forwardInclude free body diagramarrow_forwardInclude free body diagramarrow_forward
- Test 2 МК 02 5. (a) When rebuilding her car's engine, a physics major must exert 300 N of force to insert a dry = 0.03 (15 pts) piston into a steel cylinder. What is the normal force between the piston and cylinder? What force would she have to exert if the steel parts were oiled? Mk Giren F = 306N MK-0.3 UK = 0.03 NF = ?arrow_forward2. A powerful motorcycle can produce an acceleration of 3.50 m/s² while traveling at 90.0 km/h. At that speed the forces resisting motion, including friction and air resistance, total 400 N. (Air resistance is analogous to air friction. It always opposes the motion of an object.) What force does the motorcycle exert backward on the ground to produce its acceleration if the mass of the motorcycle with rider is 245 ke? a = 350 m/s 2arrow_forward2. A powerful motorcycle can produce an acceleration of 3.50 m/s² while traveling at 90.0 km/h. At that speed the forces resisting motion, including friction and air resistance, total 400 N. (Air resistance is analogous to air friction. It always opposes the motion of an object.) What force does the motorcycle exert backward on the ground to produce its acceleration if the mass of the motorcycle with rider is 245 kg? (10 pts) a = 3.50 m/s 2 distance 90 km/h = 3.50m/62 M = 245garrow_forward
- Using Table 17-4, determine the approximate temperature of metal that has formed a dark blue color.arrow_forwardA positively charged disk has a uniform charge per unit area σ. dq R P x The total electric field at P is given by the following. Ek [2 - x (R² + x2) 1/2 Sketch the electric field lines in a plane perpendicular to the plane of the disk passing through its center.arrow_forwardConsider a closed triangular box resting within a horizontal electric field of magnitude E = 8.02 104 N/C as shown in the figure below. A closed right triangular box with its vertical side on the left and downward slope on the right rests within a horizontal electric field vector E that points from left to right. The box has a height of 10.0 cm and a depth of 30.0 cm. The downward slope of the box makes an angle of 60 degrees with the vertical. (a) Calculate the electric flux through the vertical rectangular surface of the box. kN · m2/C(b) Calculate the electric flux through the slanted surface of the box. kN · m2/C(c) Calculate the electric flux through the entire surface of the box. kN · m2/Carrow_forward
- The figure below shows, at left, a solid disk of radius R = 0.600 m and mass 75.0 kg. Tu Mounted directly to it and coaxial with it is a pulley with a much smaller mass and a radius of r = 0.230 m. The disk and pulley assembly are on a frictionless axle. A belt is wrapped around the pulley and connected to an electric motor as shown on the right. The turning motor gives the disk and pulley a clockwise angular acceleration of 1.67 rad/s². The tension T in the upper (taut) segment of the belt is 145 N. (a) What is the tension (in N) in the lower (slack) segment of the belt? N (b) What If? You replace the belt with a different one (one slightly longer and looser, but still tight enough that it does not sag). You again turn on the motor so that the disk accelerates clockwise. The upper segment of the belt once again has a tension of 145 N, but now the tension in the lower belt is exactly zero. What is the magnitude of the angular acceleration (in rad/s²)? rad/s²arrow_forwardA bridge truss extends x = 217 m across a river (shown in the figure below) where 0 = 40°. The structure is free to slide horizontally to permit thermal expansion. The structural components are connected by pin joints, and the masses of the bars are small compared with the mass of a 1300 kg car at the center. Calculate the force of tension or compression in each structural component (in N). B D T T T T T 22820 AB AC BC ||| || || || BD N ---Select--- N ---Select--- N ---Select--- N ---Select--- DE N ---Select--- T DC= N ---Select--- TEC N ---Select--- с ✓ Earrow_forwardno ai pleasearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning


Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Thermal Expansion and Contraction of Solids, Liquids and Gases; Author: Knowledge Platform;https://www.youtube.com/watch?v=9UtfegG4DU8;License: Standard YouTube License, CC-BY