Foundations of Astronomy, Enhanced
13th Edition
ISBN: 9781305980686
Author: Michael A. Seeds; Dana Backman
Publisher: Cengage Learning US
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 15, Problem 7P
To determine
The amount by which the distance is over or underestimated.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Physics written by hand.
If interstellar dust makes an RR Lyrae variable star look 2 magnitudes fainter than the star should, by how much will you over- or underestimate its
10(my - My + 5)/5.)
distance? (Hint: Use the magnitude-distance formula d =
d estimate
dactual
Is your calculated value an over- or underestimate?
overestimate
underestimate
If interstellar dust makes an RR Lyrae variable star look 5 magnitude fainter than the star should, by how much will you over- or underestimate its distance? (Hint: Use the magnitude distance formula d= 10 (Mv -Mv +5)/5 .)
d estimate/ d actual = ________is your calculated value over or underestimated?
Chapter 15 Solutions
Foundations of Astronomy, Enhanced
Ch. 15 - What evidence can you give that we live in a...Ch. 15 - Prob. 2RQCh. 15 - Why didnt astronomers before Shapley realize how...Ch. 15 - Prob. 4RQCh. 15 - Prob. 5RQCh. 15 - Prob. 6RQCh. 15 - Which parts of a spiral galaxy comprise the...Ch. 15 - Prob. 8RQCh. 15 - Prob. 9RQCh. 15 - Prob. 10RQ
Ch. 15 - Prob. 11RQCh. 15 - Prob. 12RQCh. 15 - Prob. 13RQCh. 15 - Prob. 14RQCh. 15 - Prob. 15RQCh. 15 - Prob. 16RQCh. 15 - Prob. 17RQCh. 15 - Prob. 18RQCh. 15 - Prob. 19RQCh. 15 - Prob. 20RQCh. 15 - Prob. 21RQCh. 15 - Prob. 22RQCh. 15 - Prob. 23RQCh. 15 - Prob. 24RQCh. 15 - Prob. 25RQCh. 15 - Prob. 26RQCh. 15 - Rank these objects from oldest to youngest the...Ch. 15 - What evidence contradicts the top-down hypothesis...Ch. 15 - Prob. 29RQCh. 15 - The story of a process makes the facts easier to...Ch. 15 - Prob. 1DQCh. 15 - Prob. 2DQCh. 15 - Prob. 3DQCh. 15 - Why doesn’t the Milky Way circle the sky along the...Ch. 15 - Prob. 1PCh. 15 - Prob. 2PCh. 15 - Prob. 3PCh. 15 - Prob. 4PCh. 15 - Prob. 5PCh. 15 - Prob. 6PCh. 15 - Prob. 7PCh. 15 - Prob. 8PCh. 15 - If the Sun is 4.6 billion years old, how many...Ch. 15 - Prob. 10PCh. 15 - Prob. 11PCh. 15 - Prob. 12PCh. 15 - Prob. 13PCh. 15 - Prob. 14PCh. 15 - Prob. 15PCh. 15 - Prob. 2LTLCh. 15 - Prob. 3LTLCh. 15 - Prob. 4LTLCh. 15 - Prob. 5LTL
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- An O8 V star has an apparent visual magnitude of +5. Use the method of spectroscopic parallax to estimate the distance to the star (in pc). (Hints: Refer to one of the H–R diagrams in the chapter, and use the magnitude–distance formula, d = 10(mV − MV + 5)/5 where d is the distance in parsecs, mV and MV are the apparent and absolute visual magnitude respectively.)arrow_forwardIf interstellar dust makes an RR Lyrae variable star look 7 magnitudes fainter than the star should, by how much will you over- or underestimate its distance? (Hint: Use the magnitude-distance formula d = 10(mV − MV + 5)/5.) Is your calculated value an over- or underestimate?arrow_forwardCan you please help with Part 2 of 2? Thank you.arrow_forward
- The difference in absolute magnitude between two objects is related to their fluxes by the flux-magnitude relation: FA / FB = 2.51(MB - MA) A distant galaxy contains a supernova with an absolute magnitude of -19. If this supernova were placed next to our Sun (M = +4.8) and you observed both of them from the same distance, how much more flux would the supernova emit than the Sun? Fsupernova / FSun = ?arrow_forwardusing the center-of-mass equations or the Carter of Mass Calculator (under Binary-Star Basics, abova), you will investigate a specific binary star system. Assume that Star 1 has m, 3.2 solar masses, Star 2 has m,-0.9 solar masses, and the total separation of the two (R) is 34 All (One AU is Earth's average distance from the Sun) (2) What is the distance, d. (In Au) from Star 1 to the center of mass? AU (b) What is the distance, dy On Au) from Star 2 to the center of mass AU ( what is the ratio of d, tod?arrow_forwardThe answer is not 0.04. I need help!arrow_forward
- If interstellar dust makes an RR Lyrae variable star look 7 magnitudes fainter than the star should, by how much will you over- or underestimate its distance? (Hint: Use the magnitude-distance formula d = 10 mv - Mv + 5)/5.) destimate dactual = Is your calculated value an over- or underestimate? O overestimate O underestimatearrow_forwardA planetary nebula expanded in radius 0.3 arc seconds in 30 years. Doppler measurements show the nebula is expanding at a rate of 35 km/s. How far away is the nebula in parsecs? First, determine what distance the nebular expanded in parsecs during the time mentioned. Δd = vpc/sTs So we first need to convert the rate into pc/s and the time into seconds: vpc/s = vkm/s (1 pc / 3.09 x 1013km) vpc/s = ? Ts = (Tyr)(365 days/yr)(24 hrs/day)(3600 s/hr) Ts = ? s Δd= vpc/sTs Therefore, Δd = ? pcarrow_forwardFor a main sequence star with luminosity L, how many kilograms of hydrogen is being converted into helium per second? Use the formula that you derive to estimate the mass of hydrogen atoms that are converted into helium in the interior of the sun (LSun = 3.9 x 1026 W). (Note: the mass of a hydrogen atom is 1 mproton and the mass of a helium atom is 3.97 mproton. You need four hydrogen nuclei to form one helium nucleus.)arrow_forward
- Finally estimate the lifetime of an M0 spectral type star if the total mass of the star is M = 0.51M⊙ , and it has a total luminosity L = 7.7× 10−2L⊙. Make the same assumptions as the previous two problems. How does your calculated Main Sequence lifetime for the M0 type star compare to the Main Sequence lifetime you calculated for the Sun?arrow_forwardUsing the center-of-mass equations or the Center of Mass Calculator (under Binary-Star Basics, above), you will investigate a specific binary-star system. Assume that Star 1 has m₁ = 3.4 solar masses, Star 2 has m₂ = 1.4 solar masses, and the total separation of the two (R) is 52 AU. (One AU is Earth's average distance from the Sun.) (a)What is the distance, d₁, (in AU) from Star 1 to the center of mass? AU (b)What is the distance, d2, (in AU) from Star 2 to the center of mass? AUarrow_forwardUsing the center-of-mass equations or the Center of Mass Calculator (under Binary-Star Basics, above), you will investigate a specific binary-star system. Assume that Star 1 has m1 = 3.2 solar masses, Star 2 has m2 = 1.6 solar masses, and the total separation of the two (R) is 80 AU. (One AU is Earth's average distance from the Sun.) (a) What is the distance, d1, (in AU) from Star 1 to the center of mass?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Stars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxStars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning