Loose Leaf For Physics With Connect 2 Semester Access Card
Loose Leaf For Physics With Connect 2 Semester Access Card
3rd Edition
ISBN: 9781259679391
Author: Alan Giambattista
Publisher: MCGRAW-HILL HIGHER EDUCATION
bartleby

Videos

Question
Book Icon
Chapter 15, Problem 97P

(a)

To determine

The maximum possible efficiency of the plant.

(a)

Expert Solution
Check Mark

Answer to Problem 97P

The maximum possible efficiency of the plant is 39.6%.

Explanation of Solution

Write an expression for the maximum possible efficiency of the plant.

er=1TCTH (I)

Here, er is the maximum possible efficiency of the plant, TC is the temperature of cold reservoir and TH is the temperature of hot reservoir.

Conclusion:

Substitute 323K for TC and 535K for TH in equation (I) to find er.

er=1323K535K=(0.396)(100%)=39.6%

Thus, the maximum possible efficiency of the plant is 39.6%.

(b)

To determine

The rate at which the heat removed.

(b)

Expert Solution
Check Mark

Answer to Problem 97P

The rate at which the heat removed is 4.98×108W.

Explanation of Solution

Write an expression for the heat removed.

QCΔt=WneteΔtWnetΔt=WnetΔt(1e1) (II)

Here, QC is the heat removed, Δt is the length of interval, Wnet is the net work done and e is the efficiency.

Conclusion:

Substitute 1.23×108W for Wnet/Δt, 50.0%er for e and 39.6% for er in equation (II) to find QC/Δt.

QC/Δt=(1.23×108W)(1(50.0%)(er)1)=(1.23×108W)(1(50.0%)(39.6%)1)=(1.23×108W)(1(50.0%)(1100%)(39.6%)(1100%)1)(1.23×108W)(1(0.50)(0.396)1)=4.98×108W

Thus, the rate at which the heat removed is 4.98×108W.

(c)

To determine

The maximum possible rate at which water can be pumped uphill.

(c)

Expert Solution
Check Mark

Answer to Problem 97P

The maximum possible rate at which water can be pumped uphill is 33.0m3/s.

Explanation of Solution

Write an expression for the rate of work done.

WnetΔt=mghΔt=(m/Δt)gh (III)

Here, m is the mass, g is the acceleration due to gravity and h is the height.

Rewrite the equation (III) to find m/Δt.

(m/Δt)=(Wnet/Δt)gh (IV)

Conclusion:

Substitute 1.23×108W for Wnet/Δt, 9.80m/s2 for g and 380m for h in equation (IV) to find m/Δt.

(m/Δt)=(1.23×108W)(9.80m/s2)(380m)=1.23×108W3724m2/s2=3.30×104kg/s

Thus, the maximum possible rate at which water can be pumped uphill is 33.0m3/s.

Thus, calculate the volume flow rate.

(V/Δt)=(m/Δt)(1m31000kg)=33.0m3/s

Here, (V/Δt) is the volume flow rate.

Thus, the maximum possible rate at which water can be pumped uphill is 33.0m3/s.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!

Chapter 15 Solutions

Loose Leaf For Physics With Connect 2 Semester Access Card

Ch. 15.8 - Prob. 15.8CPCh. 15.8 - Prob. 15.9PPCh. 15 - Prob. 1CQCh. 15 - Prob. 2CQCh. 15 - Prob. 3CQCh. 15 - Prob. 4CQCh. 15 - Prob. 5CQCh. 15 - Prob. 6CQCh. 15 - Prob. 7CQCh. 15 - Prob. 8CQCh. 15 - Prob. 9CQCh. 15 - Prob. 10CQCh. 15 - 11. A warm pitcher of lemonade is put into an ice...Ch. 15 - Prob. 12CQCh. 15 - Prob. 13CQCh. 15 - Prob. 14CQCh. 15 - Prob. 1MCQCh. 15 - Prob. 2MCQCh. 15 - Prob. 3MCQCh. 15 - Prob. 4MCQCh. 15 - Prob. 5MCQCh. 15 - Prob. 6MCQCh. 15 - Prob. 7MCQCh. 15 - Prob. 8MCQCh. 15 - Prob. 9MCQCh. 15 - Prob. 10MCQCh. 15 - Prob. 11MCQCh. 15 - Prob. 12MCQCh. 15 - Prob. 13MCQCh. 15 - Prob. 1PCh. 15 - Prob. 2PCh. 15 - Prob. 3PCh. 15 - Prob. 4PCh. 15 - Prob. 5PCh. 15 - Prob. 6PCh. 15 - Prob. 7PCh. 15 - Prob. 8PCh. 15 - Prob. 9PCh. 15 - Prob. 10PCh. 15 - Prob. 11PCh. 15 - Prob. 12PCh. 15 - Prob. 13PCh. 15 - Prob. 14PCh. 15 - Prob. 15PCh. 15 - Prob. 16PCh. 15 - Prob. 17PCh. 15 - Prob. 18PCh. 15 - Prob. 19PCh. 15 - Prob. 20PCh. 15 - Prob. 21PCh. 15 - Prob. 22PCh. 15 - Prob. 23PCh. 15 - Prob. 24PCh. 15 - 25. What is the efficiency of an electric...Ch. 15 - Prob. 26PCh. 15 - Prob. 27PCh. 15 - Prob. 28PCh. 15 - Prob. 29PCh. 15 - Prob. 30PCh. 15 - Prob. 31PCh. 15 - Prob. 32PCh. 15 - Prob. 33PCh. 15 - Prob. 34PCh. 15 - Prob. 35PCh. 15 - Prob. 36PCh. 15 - Prob. 37PCh. 15 - Prob. 38PCh. 15 - Prob. 39PCh. 15 - Prob. 40PCh. 15 - Prob. 41PCh. 15 - Prob. 42PCh. 15 - Prob. 43PCh. 15 - Prob. 44PCh. 15 - Prob. 45PCh. 15 - Prob. 46PCh. 15 - Prob. 47PCh. 15 - Prob. 48PCh. 15 - Prob. 49PCh. 15 - Prob. 50PCh. 15 - Prob. 51PCh. 15 - Prob. 52PCh. 15 - Prob. 53PCh. 15 - Prob. 54PCh. 15 - Prob. 55PCh. 15 - Prob. 56PCh. 15 - Prob. 57PCh. 15 - Prob. 58PCh. 15 - Prob. 59PCh. 15 - Prob. 60PCh. 15 - Prob. 61PCh. 15 - Prob. 62PCh. 15 - Prob. 63PCh. 15 - Prob. 64PCh. 15 - Prob. 65PCh. 15 - Prob. 66PCh. 15 - Prob. 67PCh. 15 - Prob. 68PCh. 15 - Prob. 69PCh. 15 - Prob. 70PCh. 15 - Prob. 71PCh. 15 - Prob. 72PCh. 15 - Prob. 73PCh. 15 - Prob. 74PCh. 15 - Prob. 75PCh. 15 - Prob. 76PCh. 15 - Prob. 77PCh. 15 - Prob. 78PCh. 15 - Prob. 79PCh. 15 - Prob. 80PCh. 15 - Prob. 81PCh. 15 - Prob. 82PCh. 15 - Prob. 83PCh. 15 - Prob. 84PCh. 15 - Prob. 85PCh. 15 - Prob. 86PCh. 15 - Prob. 87PCh. 15 - Prob. 88PCh. 15 - Prob. 89PCh. 15 - Prob. 90PCh. 15 - Prob. 91PCh. 15 - Prob. 92PCh. 15 - Prob. 93PCh. 15 - Prob. 94PCh. 15 - Prob. 95PCh. 15 - Prob. 96PCh. 15 - Prob. 97PCh. 15 - Prob. 98PCh. 15 - Prob. 99PCh. 15 - Prob. 100P
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Text book image
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
Text book image
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
The Second Law of Thermodynamics: Heat Flow, Entropy, and Microstates; Author: Professor Dave Explains;https://www.youtube.com/watch?v=MrwW4w2nAMc;License: Standard YouTube License, CC-BY