Loose Leaf For Physics With Connect 2 Semester Access Card
Loose Leaf For Physics With Connect 2 Semester Access Card
3rd Edition
ISBN: 9781259679391
Author: Alan Giambattista
Publisher: MCGRAW-HILL HIGHER EDUCATION
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 16, Problem 110P
To determine

The angular speed of the dipole when it reaches θ=0, if it was released from rest at θ=90.0°.

Expert Solution & Answer
Check Mark

Answer to Problem 110P

The angular speed of the dipole when it reaches θ=0, if it was released from rest at θ=90.0°, is 20rad/s.

Explanation of Solution

Write the expression for the torque acting on the dipole.

τ=qEdsinθ (I)

Here, τ is the torque on the dipole, q is the charge, E is the electric field acting, d is dipole length and θ is the angle the dipole makes with electric field

Write the expression for the angular acceleration.

α=τI

Here, α is the angular acceleration and I is the moment of inertia of the dipole

Put equation (I) in the above equation.

α=(qEdI)sinθ (II)

Since the expression for the angular acceleration contains sinθ , it is a variable function. This implies Newton’s constant acceleration equations of motion cannot be applied here.

The best way to calculate angular speed is to use right average angular acceleration. This average acceleration must lie between qEd/I and 0 within the range of θ=0 to 0=π2.

Substitute π2 for θ to get αmax and 0 for θ to get αmin in equation (II).

αmax=(qEdI)sinπ2=qEdI

αmin=(qEdI)sin0=0

Here, αmin is the minimum angular acceleration and αmax is the maximum angular acceleration.

The following figure gives the graph of sinθ for the interval θ=0to θ=π2.

Loose Leaf For Physics With Connect 2 Semester Access Card, Chapter 16, Problem 110P

Above figure indicates that average value of sinθ in this range is larger than one half of maximum value, because of the shape of the graph.

Consider the area of rectangle having height equal to right average acceleration and width π2.This area has same value as area below the graph of sinθ versus θ in the limit θ=0 to θ=π2.

From more advanced mathematics, area of the sine function is the equal to 1, when θ is in radians.

Write the expression for the area of rectangle.

sinθavg(π2)=1sinθavg=2π

Write the expression for the angular velocity.

ωf2ωi2=2α(θfθi) (III)

Here, ωf is the final angular velocity, ωi is the initial angular velocity, θf is the final angular position and θi is the initial angular position.

The dipole system consists of charges at end of uniform rod.

Write the expression for moment of inertia of dipole system.

I=mr2+(112)ML2+mr2 (IV)

Here, m is the mass of charge, r is the distance between center to end of rod, M is the mass of rod and L is the length of rod.

Conclusion:

Substitute 5.0g for m , 20.0g for M , 3.5cm for r and 7.0cm for L in equation (IV) to get I.

I=(5.0g×1kg1000g)(3.5cm×1m100cm)2+(112)(20.0g1kg1000g)(7.0cm×1m100cm)2+(5.0g×1kg1000g)(3.5cm×1m100cm)2=2.0×105kgm2

Substitute 0rad/s for ωi , qEdIsinθavg for α , π2 for θf and 0 for θi in equation(III) to get ωf.

ωf2(0rad/s)2=2×qEdIsinθavg(π20)ωf2=qπEdIsinθavg

Substitute 2π for sinθavg in above equation to get the final expression for ωf.

ωf2=qπEdI2πωf=2qEdI

Substitute 3.0μC for q , 2.0×104N/C for E , 7.0cm for d and 2.0×105kgm2 for I in above equation to get ωf.

ωf=2(3.0μC×1C106μC)(2.0×104N/C)(7.0cm×1m100cm)2.0×105kgm21kgm1Ns21rad1=20rad/s

Therefore, the angular speed of the dipole when it reaches θ=0, if it was released from rest at θ=90.0°, is 20rad/s.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!

Chapter 16 Solutions

Loose Leaf For Physics With Connect 2 Semester Access Card

Ch. 16.4 - Prob. 16.8PPCh. 16.5 - Prob. 16.5CPCh. 16.5 - 16.9 Slowing Some Protons If a beam of protons...Ch. 16.5 - Prob. 16.10PPCh. 16.6 - Prob. 16.11PPCh. 16.7 - Prob. 16.12PPCh. 16.7 - Prob. 16.13PPCh. 16 - Prob. 1CQCh. 16 - Prob. 2CQCh. 16 - Prob. 3CQCh. 16 - Prob. 4CQCh. 16 - Prob. 5CQCh. 16 - Prob. 6CQCh. 16 - Prob. 7CQCh. 16 - Prob. 8CQCh. 16 - Prob. 9CQCh. 16 - Prob. 10CQCh. 16 - Prob. 11CQCh. 16 - Prob. 12CQCh. 16 - 13. An electroscope consists of a conducting...Ch. 16 - Prob. 14CQCh. 16 - Prob. 15CQCh. 16 - 16. In some textbooks, the electric field is...Ch. 16 - Prob. 17CQCh. 16 - Prob. 18CQCh. 16 - Prob. 19CQCh. 16 - Prob. 1MCQCh. 16 - 2. In electrostatic equilibrium, the excess...Ch. 16 - Prob. 3MCQCh. 16 - Prob. 4MCQCh. 16 - Prob. 5MCQCh. 16 - 6. A tiny charged pellet of mass m is suspended at...Ch. 16 - Prob. 7MCQCh. 16 - Prob. 8MCQCh. 16 - Prob. 9MCQCh. 16 - Prob. 10MCQCh. 16 - 1. Find the total positive charge of all the...Ch. 16 - Prob. 2PCh. 16 - Prob. 3PCh. 16 - Prob. 4PCh. 16 - Prob. 5PCh. 16 - 6. A positively charged rod is brought near two...Ch. 16 - 7. A metal sphere A has charge Q. Two other...Ch. 16 - Prob. 8PCh. 16 - Prob. 9PCh. 16 - Prob. 10PCh. 16 - Prob. 11PCh. 16 - Prob. 12PCh. 16 - Prob. 13PCh. 16 - 14. How many electrons must be removed from each...Ch. 16 - Prob. 15PCh. 16 - 16. Two metal spheres separated by a distance much...Ch. 16 - 17. In the figure, a third point charge − q is...Ch. 16 - 18. Two point charges are separated by a distance...Ch. 16 - 19. A K+ ion and a Cl− ion are directly across...Ch. 16 - Prob. 20PCh. 16 - Prob. 21PCh. 16 - Prob. 22PCh. 16 - Prob. 23PCh. 16 - Prob. 24PCh. 16 - Prob. 25PCh. 16 - Prob. 26PCh. 16 - Prob. 27PCh. 16 - 28. The electric field across a cell membrane is...Ch. 16 - Prob. 29PCh. 16 - Prob. 30PCh. 16 - Prob. 31PCh. 16 - Prob. 32PCh. 16 - Prob. 33PCh. 16 - 34. What is the electric field at x = d (point...Ch. 16 - 35. What is the electric field at x = 2d (point S...Ch. 16 - Problems 34–38. Positive point charges q and 2q...Ch. 16 - Problems 34–38. Positive point charges q and 2q...Ch. 16 - Problems 34–38. Positive point charges q and 2q...Ch. 16 - 39. Sketch the electric field lines in the plane...Ch. 16 - 40. Sketch the electric field lines near two...Ch. 16 - 41. Find the electric field at point B, midway...Ch. 16 - 42. Find the electric field at point C, the center...Ch. 16 - Problems 41-44. Two tiny objects with equal...Ch. 16 - 44. Where would you place a third small object...Ch. 16 - Prob. 45PCh. 16 - 46. Two equal charges (Q = +1.00 nC) are situated...Ch. 16 - 47. Suppose a charge q is placed at point x = 0, y...Ch. 16 - 48. Two point charges, q1 = +20.0 nC and q2 =...Ch. 16 - Prob. 49PCh. 16 - 50. In each of six situations, a particle (mass m,...Ch. 16 - 51. An electron is placed in a uniform electric...Ch. 16 - 52. An electron is projected horizontally into the...Ch. 16 - 53. A horizontal beam of electrons initially...Ch. 16 - 54. A particle with mass 2.30 g and charge +10.0...Ch. 16 - Problems 54 and 55 55. Consider the same...Ch. 16 - 56. ✦ Some forms of cancer can be treated using...Ch. 16 - Prob. 57PCh. 16 - Prob. 58PCh. 16 - Problems 59-61. A conducting sphere (radius a) is...Ch. 16 - 60. The inner sphere has a net charge of +6 μC and...Ch. 16 - Prob. 61PCh. 16 - Prob. 62PCh. 16 - Prob. 63PCh. 16 - Prob. 64PCh. 16 - Prob. 65PCh. 16 - 66. A hollow conducting sphere of radius R carries...Ch. 16 - Prob. 67PCh. 16 - Prob. 68PCh. 16 - Prob. 69PCh. 16 - Prob. 70PCh. 16 - Prob. 71PCh. 16 - Prob. 72PCh. 16 - Prob. 73PCh. 16 - Prob. 74PCh. 16 - Prob. 75PCh. 16 - 76. A thin, flat sheet of charge has a uniform...Ch. 16 - Prob. 77PCh. 16 - 78. A parallel-plate capacitor consists of two...Ch. 16 - Prob. 79PCh. 16 - Prob. 80PCh. 16 - 81. In a thunderstorm, charge is separated through...Ch. 16 - 82. Two otherwise identical conducting spheres...Ch. 16 - 83. Two metal spheres of radius 5.0 cm carry net...Ch. 16 - 84. In the diagram, regions A and C extend far to...Ch. 16 - Prob. 85PCh. 16 - Prob. 86PCh. 16 - Prob. 87PCh. 16 - 88. Consider two protons (charge +e), separated by...Ch. 16 - Prob. 89PCh. 16 - 90. A raindrop inside a thundercloud has charge...Ch. 16 - 91. An electron beam in an oscilloscope is...Ch. 16 - 92. A point charge q1 = +5.0 μC is fixed in place...Ch. 16 - Prob. 93PCh. 16 - 94. Object 4 has mass 90.0 g and hangs from an...Ch. 16 - Prob. 95PCh. 16 - Prob. 96PCh. 16 - Prob. 97PCh. 16 - Prob. 98PCh. 16 - Prob. 99PCh. 16 - Prob. 100PCh. 16 - Prob. 101PCh. 16 - Prob. 102PCh. 16 - Prob. 103PCh. 16 - Prob. 104PCh. 16 - Prob. 105PCh. 16 - Prob. 106PCh. 16 - Prob. 107PCh. 16 - Prob. 108PCh. 16 - Prob. 109PCh. 16 - Prob. 110PCh. 16 - Prob. 111PCh. 16 - Prob. 112PCh. 16 - Prob. 113PCh. 16 - Prob. 114P
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Text book image
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
Text book image
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY