ENGINEERING CIRCUIT ANALYSIS ACCESS >I<
ENGINEERING CIRCUIT ANALYSIS ACCESS >I<
9th Edition
ISBN: 9781264010936
Author: Hayt
Publisher: MCG
bartleby

Videos

Question
Book Icon
Chapter 16, Problem 39E
To determine

The required z parameters for the given condition.

Expert Solution & Answer
Check Mark

Answer to Problem 39E

The required z parameters is z=[(89.71j98.38)(94.06j4.34)(527.27+j9401.42)(563.86j35.47)] Ω.

Explanation of Solution

Given data:

The angular frequency is ω=108 rad/s.

Calculation:

The given diagram is shown in Figure 1.

ENGINEERING CIRCUIT ANALYSIS ACCESS >I<, Chapter 16, Problem 39E , additional homework tip  1

The conversion from pF to F is given by,

1 pF=1012 F

The conversion from 5 pF to F is given by,

5 pF=5×1012 5 F

The conversion from to Ω is given by,

1 =103 Ω

The conversion from 100 to Ω is given by,

100 =100×103 Ω=100000 Ω

The conversion from 10 to Ω is given by,

10 =10×103 Ω=10000 Ω

The capacitive reactance of 5 pF capacitor is given by,

XC5=1jωC5

Substitute 108 rad/s for ω and 5×1012 F for C5 in the above equation.

XC5=1j(108 rad/s)(5×1012 F)=j2000 Ω

The capacitive reactance of 1 pF capacitor is given by,

XC1=1jωC1

Substitute 108 rad/s for ω and 1×1012 F for C1 in the above equation.

XC1=1j(108 rad/s)(1×1012 F)=j10000 Ω

The modified diagram is shown in Figure 2.

ENGINEERING CIRCUIT ANALYSIS ACCESS >I<, Chapter 16, Problem 39E , additional homework tip  2

Apply KCL at node VA.

I1+VA100000+VAj2000+VAVBj10000=0I1=105VA+j(5×104)VA+j(1×104)(VAVB)I1=(105+j(6×104))VAj(1×104)VB        (1)

Apply KCL at node VB.

I2+VB10000+0.01VA+VBVAj10000=0I2=(1×104)VB+0.01VA+j(1×104)(VBVA)I1=(0.01j(1×104))VA((1×104)+j(1×104))VB        (2)

The standard equation for admittance parameters is,

I1=y11VA+y12VA        (3)

I2=y21VA+y22VB        (4)

Write equation (1) and equation (2) in matrix form.

[I1I2]=[105+j(6×104)j(1×104)0.01j(1×104)(1×104)+j(1×104)][VAVB]        (5)

Write equation (3) and equation (4) in matrix form

[I1I2]=[y11y12y21y22][VAVB]        (6)

Compare equation (5) with equation (6).

[y11y12y21y22]=[105+j(6×104)j(1×104)0.01j(1×104)(1×104)+j(1×104)]y=[105+j(6×104)j(1×104)0.01j(1×104)(1×104)+j(1×104)]

The voltage expression V1 by Crammer’s rule is given by,

V1=|I1y12I2y22||y11y12y21y22|

Substitute 105+j(6×104) for y11, j(1×104) for y12, 0.01j(1×104) for y21 and (1×104)+j(1×104) for y22 in above equation.

V1=|I1j(1×104)I2(1×104)+j(1×104)||105+j(6×104)j(1×104)0.01j(1×104)(1×104)+j(1×104)|=(104+j104)I1(j104)I2(5.9×108+j6.1×108)(1×108j106)=(104+j104)I1+j104I2(4.9×108)+j(1.061×106)=1.414×10445°I1+10490°I21.062×10692.64°

V1=(89.71j98.38)I1+(94.06j4.34)I2        (7)

The voltage expression V2 by Crammer’s rule is given by,

V2=|y11I1y21I2||y11y12y21y22|

Substitute 105+j(6×104) for y11, j(1×104) for y12, 0.01j(1×104) for y21 and (1×104)+j(1×104) for y22 in above equation.

V1=|105+j(6×104)I10.01j(1×104)I2I2||105+j(6×104)j(1×104)0.01j(1×104)(1×104)+j(1×104)|=105+j(6×104)I2(0.01j(1×104))I1(5.9×108+j6.1×108)(1×108j106)=(105+j(6×104))I2(0.01j(1×104))I1(4.9×108)+j(1.061×106)=6×10489.04°I2+0.010.57°I11.062×10692.64°

V2=(527.27+j9401.42)I1+(563.86j35.47)I2        (8)

The standard equation for impedance parameter are,

V1=z11I1+z12I2        (9)

V2=z21I1+z22I2        (10)

Compare equation (7) with equation (9).

z11=(89.71j98.38) Ω

z12=(94.06j4.34) Ω

Compare equation (8) with equation (10).

z21=(527.27+j9401.42) Ω

z22=(563.86j35.47) Ω

The z matrix can be written as,

z=[(89.71j98.38) Ω(94.06j4.34) Ω(527.27+j9401.42) Ω(563.86j35.47) Ω]=[(89.71j98.38)(94.06j4.34)(527.27+j9401.42)(563.86j35.47)] Ω

Conclusion:

Therefore, the required z parameters is z=[(89.71j98.38)(94.06j4.34)(527.27+j9401.42)(563.86j35.47)] Ω.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
1. Implement (2,1,3) convolutional encoder in Fig. 10.12. Give a message vector, u of arbitrary length as input to the encoder.3. Generate the output code sequence.
Determine the Foster series realization using RLC one port network
Using exactly seven (7) two-way MUX, implement the following function. f(w, x, y, z) = Σm(0, 1, 3, 7, 11, 13, 15

Chapter 16 Solutions

ENGINEERING CIRCUIT ANALYSIS ACCESS >I<

Ch. 16.5 - Prob. 11PCh. 16.6 - Prob. 12PCh. 16 - For the following system of equations, (a) write...Ch. 16 - With regard to the passive network depicted in...Ch. 16 - Determine the input impedance of the network shown...Ch. 16 - For the one-port network represented schematically...Ch. 16 - Prob. 6ECh. 16 - Prob. 7ECh. 16 - Prob. 8ECh. 16 - Prob. 9ECh. 16 - (a) If both the op amps shown in the circuit of...Ch. 16 - Prob. 11ECh. 16 - Prob. 12ECh. 16 - Prob. 13ECh. 16 - Prob. 14ECh. 16 - Prob. 15ECh. 16 - Prob. 16ECh. 16 - Prob. 17ECh. 16 - Prob. 18ECh. 16 - Prob. 19ECh. 16 - Prob. 20ECh. 16 - For the two-port displayed in Fig. 16.49, (a)...Ch. 16 - Prob. 22ECh. 16 - Determine the input impedance Zin of the one-port...Ch. 16 - Determine the input impedance Zin of the one-port...Ch. 16 - Employ Y conversion techniques as appropriate to...Ch. 16 - Prob. 26ECh. 16 - Prob. 27ECh. 16 - Prob. 28ECh. 16 - Compute the three parameter values necessary to...Ch. 16 - It is possible to construct an alternative...Ch. 16 - Prob. 31ECh. 16 - Prob. 32ECh. 16 - Prob. 33ECh. 16 - Prob. 34ECh. 16 - The two-port networks of Fig. 16.50 are connected...Ch. 16 - Prob. 36ECh. 16 - Prob. 37ECh. 16 - Obtain both the impedance and admittance...Ch. 16 - Prob. 39ECh. 16 - Determine the h parameters which describe the...Ch. 16 - Prob. 41ECh. 16 - Prob. 42ECh. 16 - Prob. 43ECh. 16 - Prob. 44ECh. 16 - Prob. 45ECh. 16 - Prob. 46ECh. 16 - Prob. 47ECh. 16 - Prob. 48ECh. 16 - Prob. 49ECh. 16 - Prob. 50ECh. 16 - (a) Employ suitably written mesh equations to...Ch. 16 - Prob. 52ECh. 16 - Prob. 53ECh. 16 - The two-port of Fig. 16.65 can be viewed as three...Ch. 16 - Consider the two separate two-ports of Fig. 16.61....Ch. 16 - Prob. 56ECh. 16 - Prob. 57ECh. 16 - Prob. 58ECh. 16 - (a) Obtain y, z, h, and t parameters for the...Ch. 16 - Four networks, each identical to the one depicted...Ch. 16 - A cascaded 12-element network is formed using four...Ch. 16 - Prob. 62ECh. 16 - Continuing from Exercise 62, the behavior of a ray...
Knowledge Booster
Background pattern image
Electrical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Text book image
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Text book image
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Text book image
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Text book image
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Text book image
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Text book image
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,
Mesh Current Problems in Circuit Analysis - Electrical Circuits Crash Course - Beginners Electronics; Author: Math and Science;https://www.youtube.com/watch?v=DYg8B-ElK0s;License: Standard Youtube License