Chemistry
Chemistry
13th Edition
ISBN: 9781259911156
Author: Raymond Chang Dr., Jason Overby Professor
Publisher: McGraw-Hill Education
bartleby

Videos

Textbook Question
Book Icon
Chapter 17, Problem 17.38QP

Calculate ΔG for the reaction

H 2 O ( l ) H + ( a q ) + OH ( a q )

at 25°C for the following conditions:

  1. (a) [ H + ] = 1.0 × 10 7 M , [ OH ] = 1.0 × 10 7 M
  2. (b) [ H + ] = 1.0 × 10 3 M , [ OH ] = 1.0 × 10 4 M
  3. (c) [ H + ] = 1.0 × 10 12 M , [ OH ] = 2.0 × 10 8 M
  4. (d) [ H + ] = 3.5 M , [ OH ] = 4.8 × 10 4 M

(a)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

To calculate the free energy (ΔG) values for given aqueous phase equilibrium reaction at 25°C.

Concept Information:

Thermodynamics is the branch of science that relates heat and energy in a system.  The laws of thermodynamics explain the fundamental quantities such as temperature, energy and randomness in a system.  Entropy is the measure of randomness in a system.  For a spontaneous process there is always a positive change in entropy. Free energy (Gibbs free energy) is the term that is used to explain the total energy content in a thermodynamic system that can be converted into work.  The free energy is represented by the letter G.  All spontaneous process is associated with the decrease of free energy in the system.  The equation given below helps us to calculate the change in free energy in a system.

ΔG = ΔΗ- TΔS

Where,

ΔG  is the change in free energy of the system

ΔΗ is the change in enthalpy of the system

T is the absolute value of the temperature

ΔS is the change in entropy in the system

Free energy (Gibbs free energy) is the term that is used to explain the total energy content in a thermodynamic system that can be converted into work.  The free energy is represented by the letter G.  All spontaneous process is associated with the decrease of free energy in the system.  The standard free energy change (ΔG°rxn)

    ΔG0=-RTlnKΔG=Free energyΔG0=Standardstate free energyR=GasConstant(0.0826l.atm/K.atm)T=Temprature273KK=EqulibriumConstant(KPandKC)

Explanation of Solution

In each part of this problem we can use the following equation to calculate ΔG

ΔG=ΔG0+RTlnQΔG=ΔG0+RTln([H+][OH-])

Given the concentrations are equilibrium concentrations at 250C, Since the reaction is at equilibrium ΔG=0. This is advantage, because it allows us to calculate free energy ΔG°, the equilibrium Q=K, so we can write fallowing equation.  

ΔG0=-RTlnKwGivenvalues(R,T)aresubstitutedaboveequationΔG0=-(8.314J/Kmol)(298K)ln(1.0×10-14)=-2477.572×ln(1.0×10-14)[QHereIn1.0×10-14=-29.9336]ΔG0=8.0×104J/mol

(b)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

To calculate the free energy (ΔG) values for given aqueous phase equilibrium reaction at 25°C.

Concept Information:

Free energy (Gibbs free energy) is the term that is used to explain the total energy content in a thermodynamic system that can be converted into work.  The free energy is represented by the letter G.  All spontaneous process is associated with the decrease of free energy in the system.  The standard free energy change (ΔG°rxn) is the difference in free energy of the reactants and products in their standard state.

ΔG°rxn=nΔGf°(Products)-nΔGf°(Reactants)

Thermodynamics is the branch of science that relates heat and energy in a system.  The four laws of thermodynamics explain the fundamental quantities such as temperature, energy and randomness in a system.  Entropy is the measure of randomness in a system.  For a spontaneous process there is always a positive change in entropy. Free energy (Gibbs free energy) is the term that is used to explain the total energy content in a thermodynamic system that can be converted into work.  The free energy is represented by the letter G.  All spontaneous process is associated with the decrease of free energy in the system.  The equation given below helps us to calculate the change in free energy in a system.

ΔG = ΔΗ- TΔS

Where,

ΔG  is the change in free energy of the system

ΔΗ is the change in enthalpy of the system

T is the absolute value of the temperature

ΔS is the change in entropy in the system

Free energy (Gibbs free energy) is the term that is used to explain the total energy content in a thermodynamic system that can be converted into work.  The free energy is represented by the letter G.  All spontaneous process is associated with the decrease of free energy in the system.  The standard free energy change (ΔG°rxn)

    ΔG0=-RTlnKΔG=Free energyΔG0=Standardstate free energyR=GasConstant(0.0826l.atm/K.atm)T=Temprature273KK=EqulibriumConstant(KPandKC)

Explanation of Solution

Letus consider following reaction (b)b).[H+]=1.0×10-3M,[OH]=1.0×10-4MΔG0=8.0×104J/molΔG0=-RTlnQΔG=ΔG0+RTln([H+][OH-])Given values are substituted aboveequatuionΔG=8.0×104J/mol+(8.314J/Kmol)(298K)ln(1.0×10-3)(1.0×10-4)ΔG=4.0×104J/mol

(c)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

To calculate the free energy (ΔG) values for given aqueous phase equilibrium reaction at 25°C.

Concept Information:

Free energy (Gibbs free energy) is the term that is used to explain the total energy content in a thermodynamic system that can be converted into work.  The free energy is represented by the letter G.  All spontaneous process is associated with the decrease of free energy in the system.  The standard free energy change (ΔG°rxn)

    ΔG0=-RTlnKΔG=Free energyΔG0=Standardstate free energyR=GasConstant(0.0826l.atm/K.atm)T=Temprature273KK=EqulibriumConstant(KPandKC)

Explanation of Solution

Let us consider the following reaction (c)H2O(l)H+(aq)+OH-(aq)ΔG0=-RTlnQ[H+]=1.0×10-12M,[OH-]=2.0×10-8MΔG=ΔG0+RTln([H+][OH-])Givenvalues(R,T)aresubstitutedequationΔG=(8.0×104J/mol)+(8.314J/Kmol)(298K)ln(1.0×10-12)(2.0×10-8)ΔG=3.2×104J/mol

(d)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

To calculate the free energy (ΔG) values for given aqueous phase equilibrium reaction at 25°C.

Concept Information:

Free energy (Gibbs free energy) is the term that is used to explain the total energy content in a thermodynamic system that can be converted into work.  The free energy is represented by the letter G.  All spontaneous process is associated with the decrease of free energy in the system.  The standard free energy change (ΔG°rxn)

    ΔG0=-RTlnKΔG=Free energyΔG0=Standardstate free energyR=GasConstant(0.0826l.atm/K.atm)T=Temprature273KK=EqulibriumConstant(KPandKC)

Explanation of Solution

Let us consider the following reaction (d)[H+]=3.5M,[OH]=4.8×10-4MΔG0=-RTlnQΔG=ΔG0+RTln([H+][OH-])Given values are substituted equatuionΔG=8.0×104J/mol+(8.314J/Kmol)(298K)ln(3.5)(4.8×10-4)ΔG=6.4×104J/mol

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!

Chapter 17 Solutions

Chemistry

Ch. 17.5 - Prob. 2RCFCh. 17.5 - Prob. 3RCFCh. 17.5 - Prob. 4RCFCh. 17.6 - Calculate the equilibrium constant (KP) for the...Ch. 17.6 - Prob. 7PECh. 17.6 - Prob. 8PECh. 17.6 - A reaction has a positive H and a negative S.Is...Ch. 17.6 - For the reaction A(g)+B(g)C(g) G = 33.3 kJ/mol at...Ch. 17.6 - For the reaction C(aq)A(aq)+B(aq) G = 1.95 kJ/mol...Ch. 17 - Explain what is meant by a spontaneous process....Ch. 17 - State which of the following processes are...Ch. 17 - Prob. 17.3QPCh. 17 - Define entropy. What are the units of entropy?Ch. 17 - How does the entropy of a system change for each...Ch. 17 - State the second law of thermodynamics in words...Ch. 17 - State the third law of thermodynamics and explain...Ch. 17 - For each pair of substances listed here, choose...Ch. 17 - Arrange the following substances (1 mole each) in...Ch. 17 - Using the data in Appendix 2, calculate the...Ch. 17 - Using the data in Appendix 2, calculate the...Ch. 17 - Without consulting Appendix 2, predict whether the...Ch. 17 - Prob. 17.14QPCh. 17 - Define free energy. What are its units?Ch. 17 - Why is it more convenient to predict the direction...Ch. 17 - Calculate G for the following reactions at 25C:...Ch. 17 - Calculate G for the following reactions at 25C:...Ch. 17 - From the values of H and S, predict which of the...Ch. 17 - Find the temperatures at which reactions with the...Ch. 17 - Explain the difference between G and G.Ch. 17 - Explain why Equation (17.14). is of great...Ch. 17 - Calculate KP for the following reaction at 25C:...Ch. 17 - For the autoionization of water at 25C,...Ch. 17 - Consider the following reaction at 25C:...Ch. 17 - Calculate G and KP for the following equilibrium...Ch. 17 - (a) Calculate G and KP for the following...Ch. 17 - The equilibrium constant (KP) for the reaction...Ch. 17 - Consider the decomposition of calcium carbonate:...Ch. 17 - The equilibrium constant KP for the reaction...Ch. 17 - At 25C, G for the process H2O(l)H2O(g) is 8.6...Ch. 17 - Calculate G for the process C(diamond)C(graphite)...Ch. 17 - What is a coupled reaction? What is its importance...Ch. 17 - What is the role of ATP in biological reactions?Ch. 17 - Referring to the metabolic process involving...Ch. 17 - In the metabolism of glucose, the first step is...Ch. 17 - Explain the following nursery rhyme in terms of...Ch. 17 - Calculate G for the reaction H2O(l)H+(aq)+OH(aq)...Ch. 17 - Calculate the Ssoln for the following processes:...Ch. 17 - The following reaction is spontaneous at a certain...Ch. 17 - Which of the following thermodynamic functions are...Ch. 17 - A student placed 1 g of each of three compounds A,...Ch. 17 - Use the data in Appendix 2 to calculate the...Ch. 17 - Predict the signs of H, S, and G of the system for...Ch. 17 - Prob. 17.45QPCh. 17 - Ammonium nitrate (NH4NO3) dissolves spontaneously...Ch. 17 - Calculate the equilibrium pressure of CO2 due to...Ch. 17 - Prob. 17.48QPCh. 17 - Prob. 17.49QPCh. 17 - Carbon monoxide (CO) and nitric oxide (NO) are...Ch. 17 - Prob. 17.51QPCh. 17 - Use the thermodynamic data in Appendix 2 to...Ch. 17 - Consider the reaction A B + C at 298 K. Given...Ch. 17 - The Ksp of AgCl is given in Table 16.2. What is...Ch. 17 - Prob. 17.55QPCh. 17 - Water gas, a mixture of H2 and CO, is a fuel made...Ch. 17 - Consider the following Brnstead acid-base reaction...Ch. 17 - Crystallization of sodium acetate from a...Ch. 17 - Prob. 17.59QPCh. 17 - A certain reaction is spontaneous at 72C. If the...Ch. 17 - Predict whether the entropy change is positive or...Ch. 17 - 17.62The reaction NH3(g)+HCl(g)NH4Cl(s) proceeds...Ch. 17 - Prob. 17.63QPCh. 17 - The molar heat of vaporization of ethanol is 39.3...Ch. 17 - Prob. 17.65QPCh. 17 - In the Mond process for the purification of...Ch. 17 - Calculate G and KP for the following processes at...Ch. 17 - Calculate the pressure of O2 (in atm) over a...Ch. 17 - Prob. 17.69QPCh. 17 - Prob. 17.70QPCh. 17 - Consider the reaction N2(g)+O2(g)2NO(g) Given that...Ch. 17 - Prob. 17.72QPCh. 17 - Prob. 17.73QPCh. 17 - Prob. 17.74QPCh. 17 - Prob. 17.75QPCh. 17 - Prob. 17.76QPCh. 17 - Prob. 17.77QPCh. 17 - Prob. 17.78QPCh. 17 - Prob. 17.79QPCh. 17 - Prob. 17.80QPCh. 17 - Prob. 17.81QPCh. 17 - Prob. 17.82QPCh. 17 - Prob. 17.83QPCh. 17 - Prob. 17.84QPCh. 17 - Shown here are the thermodynamic data for ethanol:...Ch. 17 - The reaction shown here is spontaneous at a...Ch. 17 - Consider two carboxylic acids (acids that contain...Ch. 17 - Many hydrocarbons exist as structural isomers,...Ch. 17 - Use the thermodynamic data in Appendix 2 to...Ch. 17 - A rubber band is stretched vertically by attaching...Ch. 17 - One of the steps in the extraction of iron from...Ch. 17 - Derive the equation G=RTln(Q/K) where Q is the...Ch. 17 - The sublimation of carbon dioxide at 78C is...Ch. 17 - Entropy has sometimes been described as times...Ch. 17 - Referring to Figure 17.1, we see that the...Ch. 17 - A student looked up the Gf, Hf, and S values for...Ch. 17 - Consider the following reaction at 298 K:...Ch. 17 - As an approximation, we can assume that proteins...Ch. 17 - Which of the following are not state functions: S,...Ch. 17 - Which of the following is not accompanied by an...Ch. 17 - Hydrogenation reactions (for example, the process...Ch. 17 - Give a detailed example of each of the following,...Ch. 17 - At 0 K, the entropy of carbon monoxide crystal is...Ch. 17 - Comment on the correctness of the analogy...Ch. 17 - The standard enthalpy of formation and the...Ch. 17 - In chemistry, the standard state for as solution...Ch. 17 - The following diagram shows the variation of the...Ch. 17 - Consider the gas-phase reaction between A2 (green)...Ch. 17 - The KP for the reaction N2+3H22NH3 is 2.4 103 at...Ch. 17 - The table shown here lists the ion-product...Ch. 17 - Draw the missing distributions in Figure 17.2....Ch. 17 - The reaction NH3(g)+HCl(g)NH4Cl(s) is spontaneous...Ch. 17 - The boiling point of diethyl ether is 34.6C....Ch. 17 - Nicotine is the compound in tobacco responsible...Ch. 17 - Estimate S for the process depicted in Figure...Ch. 17 - At what point in the series HOnH(g) (n = 1, 2, 3,...
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY