SAPLING PHYS SCIEN&ENG W/MULTITERM ACCE
SAPLING PHYS SCIEN&ENG W/MULTITERM ACCE
6th Edition
ISBN: 9781319110130
Author: Tipler
Publisher: MAC HIGHER
bartleby

Concept explainers

Question
Book Icon
Chapter 17, Problem 27P

(a)

To determine

The rms speed of H2.

(a)

Expert Solution
Check Mark

Explanation of Solution

Given:

The escape speed of gas molecules is 60km/s.

The temperature at the Jupiter surface is 150°C.

Formula used:

Write the expression for the rms speed of the molecule.

  vrms=3RTM ........ (1)

Here, vrms is the root mean square value o the molecule, R is the gas constant, T is the temperature and M is the molecular mass of the molecule.

Write the expression for the relation between Celsius and kelvin.

  T(K)=T(°C)+273.15 ........ (2)

Substitute 150°C in equation (2).

  T(K)=150°C+273.15T(K)=123.15K

Calculation:

Substitute 8.314J/molK for R , 123.15K for T and 2×103kg/mol for M in equation (1).

  vrms= 3( 8.314 J mol K )( 123.15K ) 2× 10 3 kg/ mol vrms=1.24km/s

Conclusion:

The rms speed of the H2 molecule is 1.24km/s

(b)

To determine

The root mean square speed of O2.

(b)

Expert Solution
Check Mark

Explanation of Solution

Given:

The escape speed of gas molecules is 60km/s.

The temperature at the Jupiter surface is 150°C.

Formula used:

Write the expression for the rms speed of the molecule.

  vrms=3RTM

Here, vrms is the root mean square value of the molecule, R is the gas constant, T is the temperature and M is the molecular mass of the molecule.

Calculation:

Substitute 8.314J/molK for R , 123.15K for T and 32×103kg/mol for M in equation (1).

  vrms= 3( 8.314J/ molK )( 123.15K ) 32× 10 3 kg/ mol vrms=310m/s

Conclusion:

The root mean square speed of oxygen molecule is 310m/s .

(c)

To determine

The root mean square speed of CO2 .

(c)

Expert Solution
Check Mark

Explanation of Solution

Given:

The escape speed of gas molecules is 60km/s.

The temperature at the Jupiter surface is 150°C.

Formula used:

Write the expression for the rms speed of the molecule.

  vrms=3RTM

Here, vrms is the root mean square value of the molecule, R is the gas constant, T is the temperature and M is the molecular mass of the molecule.

Calculation:

Substitute 8.314J/molK for R , 123.15K for T and 44×103kg/mol for M in equation (1).

  vrms= 3( 8.314J/ molK )( 123.15K ) 44× 10 3 kg/ mol vrms=264m/s

Conclusion:

The root mean square speed of the CO2 molecule is 264m/s.

(d)

To determine

The elements found in the atmosphere of the Jupiter.

(d)

Expert Solution
Check Mark

Explanation of Solution

Given:

The escape speed of gas molecules is 60km/s.

The temperature at the Jupiter surface is 150°C.

Formula used:

Write the expression for the rms speed of the molecule.

  vrms=3RTM

Here, vrms is the root mean square value of the molecule, R is the gas constant, T is the temperature and M is the molecular mass of the molecule.

Calculate 20% of escape velocity for Jupiter.

  v=15vescape ........ (3)

Here, vescape is the escape velocity of the Jupiter.

Calculation:

Substitute 60km/s for vescape in equation (3).

  v=15(60km/s)v=12km/s

Conclusion:

The velocity on the Jupiter is greater than root mean square speed for the O2,

  CO2 , H2 . Thus, these molecules will be found in Jupiter.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
P1B.7 Calculate the escape velocity (the minimum initial velocity that will take an object to in nity) from the surface of a planet of radius R. What is the value for (i) the Earth, R = 6.37 × 106 m, g = 9.81 m s−2, (ii) Mars, R = 3.38 ×106 m, mMars/mEarth = 0.108. At what temperatures do H2, He, and O2 molecules have mean speeds equal to their escape speeds? What proportion of the molecules have enough speed to escape when the temperature is (i) 240 K, (ii) 1500 K? Calculations of this kind are very important in considering the composition of planetary atmospheres.
In an interstellar gas cloud at 50.0 K, the pressure is 1.00 * 10-8 Pa. Assuming that the molecular diameters of the gases in the cloud are all 20.0 nm, what is their mean free path?
The escape speed from the Moon is much smaller than from Earth, around 2.38 km/s. a) At what temperature, in kelvins, would hydrogen molecules (with molar mass of 2.016 g/mol) have an rms speed equal to the Moon’s escape speed?

Chapter 17 Solutions

SAPLING PHYS SCIEN&ENG W/MULTITERM ACCE

Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
University Physics Volume 2
Physics
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning