Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
9th Edition
ISBN: 9781305372337
Author: Raymond A. Serway | John W. Jewett
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 17, Problem 29P

(a)

To determine

The wavelength of the initial note.

(a)

Expert Solution
Check Mark

Answer to Problem 29P

The wavelength of the initial note is 2.34m_.

Explanation of Solution

Write the expression for wavelength.

  λ=υf                                                                                                                        (I)

Here, υ is the speed, f is the frequency, and λ is the wavelength.

Conclusion:

Substitute, 343m/s for υ, and 146.8s1 for f in equation (I).

  λ=343m/s146.8s1=2.34m

Therefore, the wavelength of the initial note is 2.34m_.

(b)

To determine

The wavelength of the final note.

(b)

Expert Solution
Check Mark

Answer to Problem 29P

The wavelength of the final note is 0.390m_.

Explanation of Solution

Use equation (I) to obtain the wavelength of the final high note.

Conclusion:

Substitute, 343m/s for υ, and 880s1 for f in equation (I).

  λ=343m/s880s1=0.390m

Therefore, the wavelength of the final note is 0.390m_.

(c)

To determine

The pressure amplitude of the initial note.

(c)

Expert Solution
Check Mark

Answer to Problem 29P

The pressure amplitude of the initial note is 0.161Pa_.

Explanation of Solution

Write the expression for the intensity of the wave.

  I=ΔPmax22ρυ                                                                                                                 (II)

Here, ΔPmax is the variation in pressure amplitude, ρ is the density of the medium, and υ is the speed.

Rewrite the equation (II) to obtain an expression for ΔPmax.

  ΔPmax=2ρυI                                                                                                      (III)

Write the expression for sound level.

  β=(10dB)log(I1012W/m2)                                                                               (IV)

Here, β is the sound level, and I is the intensity.

Conclusion:

Substitute, 75dB for β in equation (IV), and rearrange to obtain a value for I

  75dB=(10dB)log(I1012W/m2)I=1075dB/10(1012W/m2)=3.16×105W/m2

Substitute, 1.20kg/m3 for ρ, 343m/s for υ, and 3.16×105W/m2 for I in equation (III).

  ΔPmax=2(1.20kg/m3)(343m/s)(3.16×105W/m2)=0.161Pa

Therefore, the pressure amplitude of the initial note is 0.161Pa_.

(d)

To determine

The pressure amplitude of the final note.

(d)

Expert Solution
Check Mark

Answer to Problem 29P

The pressure amplitude of the final note is 0.161Pa_

Explanation of Solution

The pressure amplitude is depends on the intensity, density, and speed, since all these quantities are same in case of initial and final note, the pressure amplitude of initial and final note are same.

Conclusion:

Substitute, 75dB for β in equation (IV), and rearrange to obtain a value for I

  75dB=(10dB)log(I1012W/m2)I=1075dB/10(1012W/m2)=3.16×105W/m2

Substitute, 1.20kg/m3 for ρ, 343m/s for υ, and 3.16×105W/m2 for I in equation (III).

  ΔPmax=2(1.20kg/m3)(343m/s)(3.16×105W/m2)=0.161Pa

Therefore, the pressure amplitude of the final note is 0.161Pa_.

(e)

To determine

The displacement amplitude of the initial note.

(e)

Expert Solution
Check Mark

Answer to Problem 29P

The displacement amplitude of the initial note is 4.25×107m_.

Explanation of Solution

Write the expression for the intensity in terms of displacement amplitude.

  I=12ρυ(ωsmax)2                                                                                                    (V)

Here, ω is the angular frequency, smax is the displacement amplitude.

Substitute, 2πf for ω in equation (V), and rearrange to obtain an expression for smax.

  I=12ρυ(2πfsmax)2smax=I2π2ρυf2=1fI2π2ρυ                                                                                            (VI)

Conclusion:

Substitute, 1.20kg/m3 for ρ, 343m/s for υ, 146.8s1 for f, and 3.16×105W/m2 for I in equation (VI).

  smax=1146.8s13.16×105W/m22π2(1.20kg/m3)(343m/s)=4.25×107m

Therefore, displacement amplitude of the initial note is 4.25×107m_.

(f)

To determine

The displacement amplitude of the final note.

(f)

Expert Solution
Check Mark

Answer to Problem 29P

The displacement amplitude of the final note is 7.09×108m_.

Explanation of Solution

Use equation (VI) to obtain the value of the displacement amplitude of the final note.

Conclusion:

Substitute, 1.20kg/m3 for ρ, 343m/s for υ, 880s1 for f, and 3.16×105W/m2 for I in equation (VI).

  smax=1880s13.16×105W/m22π2(1.20kg/m3)(343m/s)=7.09×108m

Therefore, displacement amplitude of the final note is 7.09×108m_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A soprano and a bass are singing a duet. While the soprano sings an A-sharp at 932 Hz, the bass sings an A-sharp but three octaves lower. In this concert hall, the density of air is 1.20 kg/m3 and its bulk modulus is 1.42 × 105 Pa. In order for their notes to have the same sound intensity level, what must be (a) the ratio of the pressure amplitude of the bass to that of the soprano and(b) the ratio of the displacement amplitude of the bass to that of the soprano?(c) What displacement amplitude (in m and in nm) does the soprano produce to sing her A-sharp at 72.0 dB?
What is the length of a pipe that is open on both ends and has a fundamental frequency of 400 Hz? You may assume the speed of sound in air is 341 m/s.
What is the first overtone frequency for an organ pipe 2.00 m in length, closed at one end? The speed of sound in air is 344 m/s.     86 Hz     172 Hz     129 Hz     258 Hz

Chapter 17 Solutions

Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University

Ch. 17 - Prob. 5OQCh. 17 - Prob. 6OQCh. 17 - Prob. 7OQCh. 17 - Prob. 8OQCh. 17 - Prob. 9OQCh. 17 - Prob. 10OQCh. 17 - Prob. 11OQCh. 17 - Prob. 12OQCh. 17 - Prob. 13OQCh. 17 - Prob. 14OQCh. 17 - Prob. 1CQCh. 17 - Prob. 2CQCh. 17 - Prob. 3CQCh. 17 - Prob. 4CQCh. 17 - Prob. 5CQCh. 17 - Prob. 6CQCh. 17 - Prob. 7CQCh. 17 - Prob. 8CQCh. 17 - Prob. 9CQCh. 17 - Prob. 1PCh. 17 - Prob. 2PCh. 17 - Write an expression that describes the pressure...Ch. 17 - Prob. 4PCh. 17 - Prob. 5PCh. 17 - Prob. 6PCh. 17 - Prob. 7PCh. 17 - Prob. 8PCh. 17 - Prob. 9PCh. 17 - Prob. 10PCh. 17 - Prob. 11PCh. 17 - Prob. 12PCh. 17 - Prob. 13PCh. 17 - Prob. 14PCh. 17 - Prob. 15PCh. 17 - Prob. 16PCh. 17 - Prob. 17PCh. 17 - Prob. 18PCh. 17 - Prob. 19PCh. 17 - Prob. 20PCh. 17 - The intensity of a sound wave at a fixed distance...Ch. 17 - Prob. 22PCh. 17 - Prob. 23PCh. 17 - Prob. 24PCh. 17 - The power output of a certain public-address...Ch. 17 - Prob. 26PCh. 17 - Prob. 27PCh. 17 - Prob. 28PCh. 17 - Prob. 29PCh. 17 - Prob. 30PCh. 17 - Prob. 31PCh. 17 - Prob. 32PCh. 17 - Prob. 33PCh. 17 - A fireworks rocket explodes at a height of 100 m...Ch. 17 - Prob. 35PCh. 17 - Prob. 36PCh. 17 - Prob. 37PCh. 17 - Prob. 38PCh. 17 - Prob. 39PCh. 17 - Prob. 40PCh. 17 - Prob. 41PCh. 17 - Prob. 42PCh. 17 - Prob. 43PCh. 17 - Prob. 44PCh. 17 - Prob. 45PCh. 17 - Prob. 46PCh. 17 - Prob. 47PCh. 17 - Prob. 48APCh. 17 - Prob. 49APCh. 17 - Prob. 50APCh. 17 - Prob. 51APCh. 17 - Prob. 52APCh. 17 - Prob. 53APCh. 17 - A train whistle (f = 400 Hz) sounds higher or...Ch. 17 - Prob. 55APCh. 17 - Prob. 56APCh. 17 - Prob. 57APCh. 17 - Prob. 58APCh. 17 - Prob. 59APCh. 17 - Prob. 60APCh. 17 - Prob. 61APCh. 17 - Prob. 62APCh. 17 - Prob. 63APCh. 17 - Prob. 64APCh. 17 - Prob. 65APCh. 17 - Prob. 66APCh. 17 - Prob. 67APCh. 17 - Prob. 68APCh. 17 - Prob. 69APCh. 17 - Prob. 70APCh. 17 - Prob. 71CPCh. 17 - Prob. 72CPCh. 17 - Prob. 73CP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
What Are Sound Wave Properties? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=GW6_U553sK8;License: Standard YouTube License, CC-BY