bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 17, Problem 33P

Suppose a flutist plays a 523-Hz C note with first harmonic displacement amplitude A1 = 100 nm. From Figure 17.21b read, by proportion, the displacement amplitudes of harmonics 2 through 7. Take these as the values, A2 through A7 in the Fourier analysis of the sound and assume B 1 = B 2 =   = B 7 = 0 . Construct a graph of the waveform of the sound. Your waveform will not look exactly like the flute waveform in Figure 17.20b because you simplify by ignoring cosine terms; nevertheless, it produces the same sensation to human hearing.

Blurred answer
Students have asked these similar questions
A bat emits a sound whose frequency is 81.8 kHz. The speed of sound in air at 20.0 oC is 343 m/s. However, the air temperature is 41.8 oC, so the speed of sound is not 343 m/s. Assume that air behaves like an ideal gas, and find the wavelength of the sound.
A bat emits a sound whose frequency is 83.2 kHz83.2 kHz. The speed of sound in air at 20.0o C is 343 m/s. However, the air temperature is 40.5o C, so the speed of sound is not 343 m/s. Assume that air behaves like an ideal gas, and find the wavelength of the sound.
A sinusoidal wave traveling has an amplitude of A=15 cm, a wavelength of =38 cm, and a frequency of 10 Hz. The vertical position of an element of the medium at t=0s and x=0m is 0 cm as shown in the figure. Write all of your answers with 3 sig fig. k=16.53m^-1 T=0.100 sec. Angular Frequency=w=62.83 Speed of Wave v=3.80 m/s   Determine Phase Constant_____rad?   Please show full work! Thank yoU!

Chapter 17 Solutions

Bundle: Physics for Scientists and Engineers, Volume 2, Loose-leaf Version, 10th + WebAssign Printed Access Card for Serway/Jewett's Physics for Scientists and Engineers, 10th, Multi-Term

Ch. 17 - Two identical loudspeakers 10.0 m apart are driven...Ch. 17 - Two sinusoidal waves on a string are defined by...Ch. 17 - Verify by direct substitution that the wave...Ch. 17 - Prob. 9PCh. 17 - A standing wave is described by the wave function...Ch. 17 - Prob. 11PCh. 17 - A taut string has a length of 2.60 m and is fixed...Ch. 17 - A string that is 30.0 cm long and has a mass per...Ch. 17 - In the arrangement shown in Figure P17.14, an...Ch. 17 - Review. A sphere of mass M = 1.00 kg is supported...Ch. 17 - Review. A sphere of mass M is supported by a...Ch. 17 - Prob. 17PCh. 17 - Review. A solid copper object hangs at the bottom...Ch. 17 - The Bay of Fundy, Nova Scotia, has the highest...Ch. 17 - Prob. 20PCh. 17 - The fundamental frequency of an open organ pipe...Ch. 17 - Ever since seeing Figure 16.22 in the previous...Ch. 17 - An air column in a glass tube is open at one end...Ch. 17 - A shower stall has dimensions 86.0 cm 86.0 cm ...Ch. 17 - Prob. 25PCh. 17 - Prob. 26PCh. 17 - As shown in Figure P17.27, water is pumped into a...Ch. 17 - As shown in Figure P17.27, water is pumped into a...Ch. 17 - Prob. 29PCh. 17 - Why is the following situation impossible? A...Ch. 17 - Review. A student holds a tuning fork oscillating...Ch. 17 - Prob. 32PCh. 17 - Suppose a flutist plays a 523-Hz C note with first...Ch. 17 - Two strings are vibrating at the same frequency of...Ch. 17 - Prob. 35APCh. 17 - A 2.00-m-long wire having a mass of 0.100 kg is...Ch. 17 - Prob. 37APCh. 17 - You are working as an assistant to a landscape...Ch. 17 - Review. Consider the apparatus shown in Figure...Ch. 17 - Review. For the arrangement shown in Figure...Ch. 17 - Review. A loudspeaker at the front of a room and...Ch. 17 - Two speakers are driven by the same oscillator of...Ch. 17 - A standing wave is set up in a string of variable...Ch. 17 - Review. The top end of a yo-yo string is held...Ch. 17 - Prob. 45APCh. 17 - Prob. 46APCh. 17 - Review. A 12.0-kg object hangs in equilibrium from...Ch. 17 - Review. An object of mass m hangs in equilibrium...Ch. 17 - Two waves are described by the wave functions...Ch. 17 - Prob. 50CP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
What Are Sound Wave Properties? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=GW6_U553sK8;License: Standard YouTube License, CC-BY