bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 2, Problem 19P

A glider of length moves through a stationary photogate on an air track. A photogate (Fig. P2.19) is a device that measures the time interval Δtd during which the glider blocks a beam of infrared light passing across the photogate. The ratio vd = td is the average velocity of the glider over this part of its motion. Suppose the glider moves with constant acceleration. (a) Argue for or against the idea that vd is equal to the instantaneous velocity of the glider when it is halfway through the photogate in space. (b) Argue for or against the idea that vd is equal to the instantaneous velocity of the glider when it is halfway through the photogate in time.

Figure P2.19

Chapter 2, Problem 19P, A glider of length  moves through a stationary photogate on an air track. A photogate (Fig. P2.19)

Blurred answer
Students have asked these similar questions
An object moves in one dimensional motion with constant acceleration a = 4.5 m/s². At time t = 0 s, the object is at xo = 2.9 m and has an initial velocity of vo = 4 m/s. How far will the object move before it achieves a velocity of v = 7 m/s? Your answer should be accurate to the nearest 0.1 m.
A glider on an air track carries a flag of length l through a stationary photogate, which measures the time interval Δtd during which the flag blocks a beam of infrared light passing across the photogate. The ratio vd = l/Δtd is the average velocity of the glider over this part of its motion. Suppose the glider moves with constant acceleration. (a) Is vd necessarily equal to the instantaneous velocity of the glider when it is halfway through the photogate in space? Explain. (b) Is vd equal to the instantaneous velocity of the glider when it is halfway through the photogate in time? Explain.
A glider of length ℓ moves through a stationary photogate on an air track. A photogate (shown) is a device that measures the time interval Dtd during which the glider blocks a beam of infrared light passing across the photogate. The ratio υd = ℓ/Δtd is the average velocity of the glider over this part of its motion. Suppose the glider moves with constant acceleration. (a) Argue for or against the idea that υd is equal to the instantaneous velocity of the glider when it is halfway through the photogate in space. (b) Argue for or against the idea that υd is equal to the instantaneous velocity of the glider when it is halfway through the photogate in time.

Chapter 2 Solutions

Bundle: Physics For Scientists And Engineers With Modern Physics, 10th + Webassign Printed Access Card For Serway/jewett's Physics For Scientists And Engineers, 10th, Multi-term

Ch. 2 - The position of a pinewood derby car was observed...Ch. 2 - An athlete leaves one end of a pool of length L at...Ch. 2 - A positiontime graph for a particle moving along...Ch. 2 - A car travels along a straight line at a constant...Ch. 2 - A person takes a trip, driving with a constant...Ch. 2 - A child rolls a marble on a bent track that is 100...Ch. 2 - Figure P2.9 shows a graph of vx versus t for the...Ch. 2 - (a) Use the data in Problem 3 to construct a...Ch. 2 - A particle starts from rest and accelerates as...Ch. 2 - Draw motion diagrams for (a) an object moving to...Ch. 2 - Each of the strobe photographs (a), (b), and (c)...Ch. 2 - An electron in a cathode-ray tube accelerates...Ch. 2 - A parcel of air moving in a straight tube with a...Ch. 2 - In Example 2.7, we investigated a jet landing on...Ch. 2 - An object moving with uniform acceleration has a...Ch. 2 - Solve Example 2.8 by a graphical method. On the...Ch. 2 - A glider of length moves through a stationary...Ch. 2 - Why is the following situation impossible?...Ch. 2 - A glider of length 12.4 cm moves on an air track...Ch. 2 - In the particle under constant acceleration model,...Ch. 2 - At t = 0, one toy car is set rolling on a straight...Ch. 2 - You are observing the poles along the side of the...Ch. 2 - Prob. 25PCh. 2 - An attacker at the base of a castle wall 3.65 m...Ch. 2 - The height of a helicopter above the ground is...Ch. 2 - Prob. 28PCh. 2 - Prob. 29PCh. 2 - At time t = 0, a student throws a set of keys...Ch. 2 - Prob. 31PCh. 2 - A student drives a moped along a straight road as...Ch. 2 - Automotive engineers refer to the time rate of...Ch. 2 - In Figure 2.11b, the area under the velocitytime...Ch. 2 - The froghopper Philaenus spumarius is supposedly...Ch. 2 - A woman is reported to have fallen 144 ft from the...Ch. 2 - At t = 0, one athlete in a race running on a long,...Ch. 2 - Prob. 38APCh. 2 - Hannah tests her new sports car by racing with...Ch. 2 - Two objects, A and B, are connected by hinges to a...Ch. 2 - Prob. 41APCh. 2 - Two thin rods are fastened to the inside of a...Ch. 2 - In a womens 100-m race, accelerating uniformly,...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Position/Velocity/Acceleration Part 1: Definitions; Author: Professor Dave explains;https://www.youtube.com/watch?v=4dCrkp8qgLU;License: Standard YouTube License, CC-BY