Universe - Text Only (Looseleaf)
Universe - Text Only (Looseleaf)
11th Edition
ISBN: 9781319115012
Author: Freedman
Publisher: MAC HIGHER
bartleby

Concept explainers

Question
Book Icon
Chapter 20, Problem 30Q

(a)

To determine

The average density of a 1MΘ dwarf star whose diameter is same as that of

Earth.

(a)

Expert Solution
Check Mark

Answer to Problem 30Q

1.83×109kgm3

Explanation of Solution

Given data:

The mass of the star is 1MΘ and the radius of the star is 6378km.

Formula used:

The average density of the star can be calculated by using the following relation:

ρ¯=MV

Here, ρ¯ is the average density of the star, M is the mass of the star and V is the volume of the star.

Write the expression for the volume of a sphere.

V=43πR3

Here, V and R are the volume and radius of a spherical object, such as a star, respectively.

Explanation:

Since the mass of the star is given in solar mass, convert it into standard the mass unit, that is, kilograms.

1M=1.989×1030kg

Recall the expression for the volume of a sphere.

V=43πR3

Substitute 6.378×106 m for R.

V=43π(6.378×106 m)3=1.059×1021m3

Recall the expression for the average density of a star.

ρ¯=MV

Substitute 1.98×1030 kg for M and 1.059×1021 m3 for V.

ρ¯=1.98×1030 kg1.059×1021 m3=1.83×109kgm3

Conclusion:

The average density of the dwarf star, ρ¯=1.83×109kgm3.

(b)

To determine

Whether or not the star’s density is the same as the density of about an elephant per teaspoon, along with proper calculation.

(b)

Expert Solution
Check Mark

Answer to Problem 30Q

No, the star’s density is approximately twice that of about an elephant per teaspoon.

Explanation of Solution

Given data:

Let us consider a general elephant with mass 4000 kg and an ordinary teaspoon with volume Vts=5×106m3.

Formula used:

Write the expression of the density as -

ρ=mVts

Here, ρ is the density of about an elephant per teaspoon, m is the mass of an elephant and Vts is the volume of a teaspoon.

Explanation:

The density will be calculated as:

ρ=mVts

Substitute 4×103kg for m and 5×106m3 for Vts in the expression of density.

ρ=4×103kg5×106m3=8.1×108kg/m3

Compare ρ¯ (calculated in a-part) and ρ(calculated above).

ρ¯=2ρ

Conclusion:

The density of the dwarf star is approximately twice that of about an elephant per teaspoon. So, the provided statement is incorrect.

(c)

To determine

The escape speed required for a gas to eject from the star’s surface.

(c)

Expert Solution
Check Mark

Answer to Problem 30Q

6450km/s

Explanation of Solution

Given data:

The mass of the star is 1MΘ and the radius of the star is 6378km.

Formula used:

Write the expression for escape speed.

ve=2GMR

Here, ve is the escape speed of the gas, G is the gravitational constant and R is the radius of the star.

Explanation:

The escape speed is the minimum speed required to send an object out of the gravitational field of the body it is being sent from.

Recall the expression for escape speed.

ve=2GMR

Substitute 6.67×1011Nm2/kg2 for G, 1.98×1030 kg for M and 6.378×106 m for R in the expression of escape velocity.

ve=(2(6.67×1011Nm2/kg2)1.98×1030 kg6.378×106 m)12=6.45×106m/s(1 km/s1000 m/s)=6450km/s

Conclusion:

The escape speed for the gas is 6450km/s.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Suppose we represent an ordinary star as a uniform solid rigid sphere. The star’s initial radius is 644000 km (comparableto the size of our sun). After it collapses, forming a neutron star, its final radius is only 18.3 km! If the original starmakes one complete rotation about its axis once per month (every 30 days), find the neutron star’s period of rotationjust after the original star has collapsed.Tafter = (in s)
The star HD 69830's mass is 1.7 ✕ 1030 kg, its radius is 6.3 ✕ 105 km, and it has a rotational period of approximately 35 days. If HD 69830 should collapse into a white dwarf of radius 7.8 ✕ 103 km, what would its period (in s) be if no mass were ejected and a sphere of uniform density can model HD 69830 both before and after?
Convert the average mass density in gm/cm-3 of a M = 0.5 Msun  R = 0.015 Rsun white dwarf to the average number density of electrons, ne , in cm-3. Let Z/A = 0.5.  What is the uncertainty in their momentum, Δp, in g-cm/s? (Hint: you'll need to find the average separation, Δx, between the electrons)

Chapter 20 Solutions

Universe - Text Only (Looseleaf)

Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Text book image
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Text book image
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Text book image
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Text book image
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning