Physics For Scientists And Engineers
Physics For Scientists And Engineers
6th Edition
ISBN: 9781429201247
Author: Paul A. Tipler, Gene Mosca
Publisher: W. H. Freeman
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 20, Problem 33P

(a)

To determine

To Calculate:The temperature at which water boils on mountain.

(a)

Expert Solution
Check Mark

Answer to Problem 33P

  90°C

Explanation of Solution

Given:Atmospheric pressure 70.0 kPa .

Formula used:

Clausius-Clapeyron equation is

  ln(P2P1)=(ΔHvapR)(1T1-1T2)

Here, P2 is the final pressure, P1 is the initial pressure, ΔHvap is the enthalpy of vaporization ofwater, R is the universal gas constant, T is the boiling temperature of the water, and ΔT is thevariable temperature.

Calculation:

Rewrite the equation,

ln(P2P1)=(ΔHvapR)(1T1-1T2) for T2

  1T1-1T2=ln( P2 P1)(R ΔHvap)1T2=1T1-ln( P2 P1)(R ΔHvap)T2=1[ 1 T 1 -( ln( P2 P1 )( R ΔHvap ))]

The boiling point of the water is 100°C and the atmospheric pressure is 1atm .

Covert Celsius temperature to Kelvin temperature as follows:

  T1 = (100 + 273)KT1 = 373K

Substitute 373 K = T1, 70.0 kPa =P2, 1 atm = P1, 8.314J/mol.K= R, 40.66×109J/mol=ΔHvap in the equation

  T2=1[1 T 1-(ln( P2 P1 )( R ΔHvap ))]

P, R and solve for T

T2=1[1373K-(ln( 70.0kPa 1atm( 101.325kPa 1atm ) )( 8.314J/mol×K 40 .66×10 3 J/mol ))]T2= 363.0 K

Covert Kelvin temperature to Celsius temperature as follows:

  T2 = (363– 273)°CT2 = 90°C

Conclusion: Therefore, the temperature at which the water boils on the mountain is 90°C .

(b)

To determine

To Calculate:The temperature at which water boils in a container.

(b)

Expert Solution
Check Mark

Answer to Problem 33P

   81°C

Explanation of Solution

Given: pressure 0.500 atm

Calculation: The water boils inside the container and the pressure inside the container is 0.500 atm .

The temperature, where the water boils in a container is,

T2=1[1 T 1-(ln( P2 P1 )( R ΔHvap ))]

Substitute 373 K =T1, 0.500 atm = P2, 1 atm = P1, 8.314J/mol K = R, and T240.66x10J/mol = ΔHvap in the equation

T2=1[1 T 1-(ln( P2 P1 )( R ΔHvap ))] to solve T2

T2=1[ 1 373K -( ln( 0.500atm 1atm )( 8.314J/mol.K 40 .66×10 3 J/mol ))]T2, = 355K

Covert Kelvin temperature to Celsius temperature as follows:

  T2 =(354– 273)°CT2 = 81°C

Therefore, the temperature at which the water boils in the container is  81°C

Conclusion: By usingClausius-Clapeyron equation,the temperature at which the water boils in the container can be calculated.

(c)

To determine

To Calculate:The pressure at water boils at 115°C is to be calculated.

(c)

Expert Solution
Check Mark

Answer to Problem 33P

  170 kPa

Explanation of Solution

Given: Temperature 115°C .

Calculation:The Clausius-Clapeyron equation is

  ln(P2P1)=(ΔHvapR)(1T1-1T2)

Apply anti-logarithm to the above equation on both sides

  ( P2 P1)=e( ΔHvap R )( 1 T 1 - 1 T 2 )P2=P1e( ΔHvap R )( 1 T 1 - 1 T 2 )

Covert Celsius temperature to Kelvin temperature as follows:

P2=P1e( ΔHvapR)(1 T 1 -1 T 2 )

  T1 = (115 + 273)KT1 = 388K

Substitute

   373 K =T1, 388 K = T2,1 atm = P1, 8.314J/mol. K = R,40.66×103 J/mol = ΔHvap in the equation and solve for P2.

  P2=(1atm)e( 40 .66×10 3 J/mol 8.314J/molK )( 1 373K - 1 388K )P2=(1atm( 101.33kPa 1atm ))e( 40 .66×10 3 J/mol 8.314J/molK )( 1 373K - 1 388K ) P2 = 168.23 kPaP2 170 kPa

Therefore, the pressure at which the water boils at 115°C temperature is 170 kPa.

Conclusion:Bythe Clausius-Clapeyron equation, the pressure at which the water boils at 115°C temperature can be calculated.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Approximately how long should it take 9.8 kgkg of ice at O•C•C to melt when it is placed in a carefully sealed Styrofoam ice chest of dimensions 25 cmcm ×x 35 cmcm ×× 55 cmcm whose walls are 1.2 cmcm thick? Assume that the conductivity of Styrofoam is double that of air and that the outside temperature is 29 •CoC.
The following systems consist of a cylindrical metal rod with a given length and radius. Rank the systems in order of increasing heat conducted in 1 s, assuming eachrod has the same temperature difference between its ends. Indicate ties where appropriate. (Refer to Table 16-3 for thermal conductivities.)System A B C DMetal lead copper silver aluminumLength 20 cm 20 cm 10 cm 10 cmRadius 3 cm 2 cm 1 cm 10 cm
Suppose a 500-mL beaker is filled to the brim with ethyl alcohol at a temperature of 5.00°C. You may assume the beaker is made of tempered glass, and has effectively zero thermal expansion. What volume, in milliliters, will overflow the beaker when its temperature reaches 24°C? The coefficient of volume expansion for ethyl alcohol is 1.100 × 10-3 /°C.  and what volume of water, in milliliters, will overflow under the same conditions? The coefficient of volume expansion for water is 2.10 × 10-4 /°C.
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
University Physics Volume 2
Physics
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Heat Transfer: Crash Course Engineering #14; Author: CrashCourse;https://www.youtube.com/watch?v=YK7G6l_K6sA;License: Standard YouTube License, CC-BY