Chemistry and Chemical Reactivity (Instructor's)
Chemistry and Chemical Reactivity (Instructor's)
10th Edition
ISBN: 9781337399180
Author: Kotz
Publisher: CENGAGE L
Question
Book Icon
Chapter 21, Problem 17PS

(a)

Interpretation Introduction

Interpretation: The complete balanced equation should be written for the given reaction.

Concept introduction: Main group elements are categorized as s-block and p-block elements. The s-block elements include metals belonging to group 1A and group 2A and elements from group 3A to 8A are referred to as p-block elements. The reaction of the metals with the nonmetals forms ionic compounds.

Ionic compounds are formed by the loss of electrons from the metal which is gained by the nonmetals. The metal gets positively charge and the non-metal attains a negative charge thus forming cations and anions respectively. They do so to attain a noble gas configuration or to attain stability.

  MMn++ne

Here, by losing electrons metal M achieve the noble gas configuration. These electrons are gained by the non-metals X as shown below.

    X+neXn

The metals of group 1A form +1 ions because the highest oxidation number is always equal to the group number of that element. Thus, the charge on group 1A elements is +1. Similarly, group 2A elements form +2 ions by losing two electrons and have an oxidation number of +2. The non-metal gains these electrons to form anions with 1 and 2 charge.

The compounds of non-metals with oxides and hydrides are covalent compounds. This is because non-metals are less electropositive and the difference in electronegativity between two elements is less than 2. If the difference in electronegativity is more than 2 then ionic compounds are formed.

(a)

Expert Solution
Check Mark

Answer to Problem 17PS

The complete balanced equation for the reaction of sodium with bromine is:

    2Na(s)+Br2(l)2NaBr(s)

Explanation of Solution

Sodium belongs to group 1A of periodic table and has an oxidation number of +1. Thus, it loses one electron to attain noble gas configuration.

    NaNa++e

This electron is gained by bromine to form an anion with one negative charge. Bromine belongs to halogen family and it has the oxidation number of 1.

    Br2+e_2Br

The number of electrons in both the equations is same. Thus an ionic compound is formed in which Sodium has +1 charge and bromine bears 1 charge. Thus, the formula of the product is NaBr.

The stoichiometric coefficients are multiplied with species to have an equal number of atoms on both the reactant and product side, for a balanced chemical equation Since bromine is present as Br2 in the reaction, hence the stoichiometric coefficient of NaBr is 2 due to which sodium also has a stoichiometric coefficient of 2.

Thus, the overall balanced equation is:

    2Na(s)+Br2(l)2NaBr(s)

(b)

Interpretation Introduction

Interpretation: The complete balanced equation should be written for the given reaction.

Concept introduction: Main group elements are categorized as s-block and p-block elements. The s-block elements include metals belonging to group 1A and group 2A and elements from group 3A to 8A are referred to as p-block elements. The reaction of the metals with the nonmetals forms ionic compounds.

Ionic compounds are formed by the loss of electrons from the metal which is gained by the nonmetals. The metal gets positively charge and the non-metal attains a negative charge thus forming cations and anions respectively. They do so to attain a noble gas configuration or to attain stability.

  MMn++ne

Here, by losing electrons metal M achieve the noble gas configuration. These electrons are gained by the non-metals X as shown below.

    X+neXn

The metals of group 1A form +1 ions because the highest oxidation number is always equal to the group number of that element. Thus, the charge on group 1A elements is +1. Similarly, group 2A elements form +2 ions by losing two electrons and have an oxidation number of +2. The non-metal gains these electrons to form anions with 1 and 2 charge.

The compounds of non-metals with oxides and hydrides are covalent compounds. This is because non-metals are less electropositive and the difference in electronegativity between two elements is less than 2. If the difference in electronegativity is more than 2 then ionic compounds are formed.

(b)

Expert Solution
Check Mark

Answer to Problem 17PS

The complete balanced equation for the reaction of magnesium with oxygen is:

  2Mg(s)+O2(g)2MgO(s)

Explanation of Solution

Magnesium belongs to group 2A of periodic table and thus has +2 oxidation number. Magnesium loses two electrons to attain noble gas configuration.

  MgMg2++2e

These two electrons are gained by the oxygen leading to the formation of an ionic compound. Oxygen belongs to the sulfur family and exists in -2 oxidation number.

  O2+2e2O2

The number of electrons in both the equations is same. Magnesium has a charge of +2 and oxygen has a charge of 2. Thus, the formula of the product formed is MgO.

The stoichiometric coefficients are multiplied with species to have an equal number of atoms on both the reactant and product side, for a balanced chemical equation. Since oxygen is present as O2 in the reaction, hence the stoichiometric coefficient of MgO is 2 due to which magnesium also has a stoichiometric coefficient of 2.

Thus, the overall balanced equation is:

    2Mg(s) + O2(g)2MgO(s)

(c)

Interpretation Introduction

Interpretation: The complete balanced equation should be written for the given reaction.

Concept introduction: Main group elements are categorized as s-block and p-block elements. The s-block elements include metals belonging to group 1A and group 2A and elements from group 3A to 8A are referred to as p-block elements. The reaction of the metals with the nonmetals forms ionic compounds.

Ionic compounds are formed by the loss of electrons from the metal which is gained by the nonmetals. The metal gets positively charge and the non-metal attains a negative charge thus forming cations and anions respectively. They do so to attain a noble gas configuration or to attain stability.

  MMn++ne

Here, by losing electrons metal M achieve the noble gas configuration. These electrons are gained by the non-metals X as shown below.

    X+neXn

The metals of group 1A form +1 ions because the highest oxidation number is always equal to the group number of that element. Thus, the charge on group 1A elements is +1. Similarly, group 2A elements form +2 ions by losing two electrons and have an oxidation number of +2. The non-metal gains these electrons to form anions with 1 and 2 charge.

The compounds of non-metals with oxides and hydrides are covalent compounds. This is because non-metals are less electropositive and the difference in electronegativity between two elements is less than 2. If the difference in electronegativity is more than 2 then ionic compounds are formed.

(c)

Expert Solution
Check Mark

Answer to Problem 17PS

The complete balanced equation for the reaction of Aluminium with fluorine is:

2Al(s)+3F2(g)2AlF3(s)

Explanation of Solution

Aluminium belongs to group 3A of the periodic table and has the highest oxidation number of +3. It loses three electrons to attain noble gas configuration of filled s and p subshells.

  AlAl3++3e

This electron is gained by fluorine to form an anion with one negative charge. Fluorine belongs to halogen family and it has the oxidation number of 1.

  F2+e2F

The number of electrons is not same in both the equations. Aluminium bear charge and fluorine bear charge. Thus, the formula of the product is AlF3.

The stoichiometric coefficients are multiplied with species to have equal number of atoms on both the reactant and product side, for a balanced chemical equation. Since there is F2 in the reactant side but aluminium forms the compound with three fluorine atoms, hence the stoichiometric coefficients of Al is 2, F2 is 3 and AlF3 is 2.

Thus, the overall balanced equation is:

    2Al(s)+3F2(g)2AlF3(s)

(d)

Interpretation Introduction

Interpretation: The complete balanced equation should be written for the given reaction.

Concept introduction: Main group elements are categorized as s-block and p-block elements. The s-block elements include metals belonging to group 1A and group 2A and elements from group 3A to 8A are referred to as p-block elements. The reaction of the metals with the nonmetals forms ionic compounds.

Ionic compounds are formed by the loss of electrons from the metal which is gained by the nonmetals. The metal gets positively charge and the non-metal attains a negative charge thus forming cations and anions respectively. They do so to attain a noble gas configuration or to attain stability.

  MMn++ne

Here, by losing electrons metal M achieve the noble gas configuration. These electrons are gained by the non-metals X as shown below.

    X+neXn

The metals of group 1A form +1 ions because the highest oxidation number is always equal to the group number of that element. Thus, the charge on group 1A elements is +1. Similarly, group 2A elements form +2 ions by losing two electrons and have an oxidation number of +2. The non-metal gains these electrons to form anions with 1 and 2 charge.

The compounds of non-metals with oxides and hydrides are covalent compounds. This is because non-metals are less electropositive and the difference in electronegativity between two elements is less than 2. If the difference in electronegativity is more than 2 then ionic compounds are formed.

(d)

Expert Solution
Check Mark

Answer to Problem 17PS

The complete balanced equation for the reaction of carbon with oxygen is:

    C(s)+O2(g)CO2(g)

Explanation of Solution

Carbon belongs to group 4A of the periodic table and has four electrons in the outermost shell. The electronic configuration of carbon is 1s22s22p2. Carbon can either gain four electrons or can lose its four electrons to form an ionic compound. However, a very high energy is required in both the cases. Thus, carbon forms covalent compounds.

The electronegativity difference between carbon and oxygen is less than 2. Thus, the compound formed is covalent compound by sharing of electrons between carbon and oxygen.

An excess of oxygen is assumed for the reaction. Thus, the product formed is CO2.

Thus, the overall balanced equation is:

    C(s)+O2(g)CO2(g)

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Describe the oxidising action of potassium dichromate and write the ionic equations for its reaction with(i) iodine (ii) H2S.
Write balanced equations for the following reactions: barium oxide with water sulfur trioxide with water
Describe the chemical and physical properties of Potassium ?

Chapter 21 Solutions

Chemistry and Chemical Reactivity (Instructor's)

Ch. 21.11 - The best catalysts used to accelerate the...Ch. 21.11 - Prob. 2.5ACPCh. 21 - Which of the following formulas is incorrect? (a)...Ch. 21 - The reaction of elemental phosphorus and excess...Ch. 21 - Like sulfur, selenium forms compounds in several...Ch. 21 - Prob. 4PSCh. 21 - Give examples of two basic oxides. Write equations...Ch. 21 - Prob. 6PSCh. 21 - Prob. 7PSCh. 21 - Prob. 8PSCh. 21 - Prob. 9PSCh. 21 - Prob. 10PSCh. 21 - For the product of the reaction you selected in...Ch. 21 - For the product of the reaction you selected in...Ch. 21 - Prob. 13PSCh. 21 - Prob. 14PSCh. 21 - Place the following oxides in order of increasing...Ch. 21 - Place the following oxides in order of increasing...Ch. 21 - Prob. 17PSCh. 21 - Prob. 18PSCh. 21 - Prob. 19PSCh. 21 - Prob. 20PSCh. 21 - Prob. 21PSCh. 21 - Prob. 22PSCh. 21 - Prob. 23PSCh. 21 - Prob. 24PSCh. 21 - Prob. 25PSCh. 21 - Prob. 26PSCh. 21 - Prob. 27PSCh. 21 - The compound Na2O2 consists of (a) two Na+ ions...Ch. 21 - Prob. 29PSCh. 21 - Write balanced equations for the reaction of...Ch. 21 - Prob. 31PSCh. 21 - (a) Write equations for the half-reactions that...Ch. 21 - Prob. 33PSCh. 21 - Prob. 34PSCh. 21 - When magnesium bums in air, it forms both an oxide...Ch. 21 - Prob. 36PSCh. 21 - Prob. 37PSCh. 21 - Prob. 38PSCh. 21 - Calcium oxide, CaO, is used to remove SO2 from...Ch. 21 - Prob. 40PSCh. 21 - Prob. 41PSCh. 21 - The element below aluminum in Group 3A is gallium,...Ch. 21 - Prob. 43PSCh. 21 - The boron trihalides (except BF3) hydrolyze...Ch. 21 - When boron hydrides burn in air, the reactions are...Ch. 21 - Prob. 46PSCh. 21 - Write balanced equations for the reactions of...Ch. 21 - Prob. 48PSCh. 21 - Prob. 49PSCh. 21 - Alumina, Al2O3, is amphoteric. Among examples of...Ch. 21 - Prob. 51PSCh. 21 - Prob. 52PSCh. 21 - Prob. 53PSCh. 21 - Silicon and oxygen form a six-membered ring in the...Ch. 21 - Describe the structure of pyroxenes (see page...Ch. 21 - Describe how ultrapure silicon can be produced...Ch. 21 - Prob. 57PSCh. 21 - Prob. 58PSCh. 21 - Prob. 59PSCh. 21 - Prob. 60PSCh. 21 - Prob. 61PSCh. 21 - Prob. 62PSCh. 21 - Prob. 63PSCh. 21 - The overall reaction involved in the industrial...Ch. 21 - Prob. 65PSCh. 21 - Prob. 66PSCh. 21 - Prob. 67PSCh. 21 - Prob. 68PSCh. 21 - Prob. 69PSCh. 21 - Which statement about oxygen is not true? (a)...Ch. 21 - Prob. 71PSCh. 21 - Prob. 72PSCh. 21 - Prob. 73PSCh. 21 - Sulfur forms a range of compounds with fluorine....Ch. 21 - Prob. 75PSCh. 21 - Which of the following statements is not correct?...Ch. 21 - The halogen oxides and oxoanions are good...Ch. 21 - Prob. 78PSCh. 21 - Bromine is obtained from brine wells. The process...Ch. 21 - Prob. 80PSCh. 21 - Prob. 81PSCh. 21 - Halogens combine with one another to produce...Ch. 21 - Prob. 83PSCh. 21 - Prob. 84PSCh. 21 - The standard enthalpy of formation of XeF4 is 218...Ch. 21 - Draw the Lewis electron dot structure for XeO3F2....Ch. 21 - Prob. 87PSCh. 21 - Prob. 88PSCh. 21 - Prob. 89GQCh. 21 - Prob. 90GQCh. 21 - Consider the chemistries of the elements...Ch. 21 - When BCl3 gas is passed through an electric...Ch. 21 - Prob. 93GQCh. 21 - Prob. 94GQCh. 21 - Prob. 95GQCh. 21 - Prob. 96GQCh. 21 - Prob. 97GQCh. 21 - Prob. 98GQCh. 21 - Prob. 99GQCh. 21 - Prob. 100GQCh. 21 - Prob. 101GQCh. 21 - Prob. 102GQCh. 21 - Prob. 103GQCh. 21 - Prob. 105GQCh. 21 - Prob. 106GQCh. 21 - A Boron and hydrogen form an extensive family of...Ch. 21 - In 1774, C. Scheele obtained a gas by reacting...Ch. 21 - The chemistry of gallium: (a) Gallium hydroxide,...Ch. 21 - Prob. 111GQCh. 21 - Prob. 112GQCh. 21 - Prob. 113GQCh. 21 - Prob. 114GQCh. 21 - Prob. 115ILCh. 21 - Prob. 116ILCh. 21 - Prob. 117ILCh. 21 - Prob. 118ILCh. 21 - Prob. 119ILCh. 21 - Prob. 120ILCh. 21 - Prob. 121SCQCh. 21 - Prob. 122SCQCh. 21 - Prob. 123SCQCh. 21 - Prob. 124SCQCh. 21 - Prob. 125SCQCh. 21 - Prob. 126SCQCh. 21 - Prob. 127SCQCh. 21 - Prob. 128SCQCh. 21 - Comparing the chemistry of carbon and silicon. (a)...Ch. 21 - Prob. 130SCQCh. 21 - Xenon trioxide, XeO3, reacts with aqueous base to...
Knowledge Booster
Background pattern image
Similar questions
Recommended textbooks for you
  • Text book image
    Chemistry: Principles and Reactions
    Chemistry
    ISBN:9781305079373
    Author:William L. Masterton, Cecile N. Hurley
    Publisher:Cengage Learning
    Text book image
    Chemistry by OpenStax (2015-05-04)
    Chemistry
    ISBN:9781938168390
    Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
    Publisher:OpenStax
    Text book image
    Chemistry & Chemical Reactivity
    Chemistry
    ISBN:9781133949640
    Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
    Publisher:Cengage Learning
  • Text book image
    Chemistry: Principles and Practice
    Chemistry
    ISBN:9780534420123
    Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
    Publisher:Cengage Learning
    Text book image
    Chemistry
    Chemistry
    ISBN:9781133611097
    Author:Steven S. Zumdahl
    Publisher:Cengage Learning
    Text book image
    Chemistry
    Chemistry
    ISBN:9781305957404
    Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
    Publisher:Cengage Learning
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781133611097
Author:Steven S. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning