Connect 1-semester Access Card For Numerical Methods For Engineers
Connect 1-semester Access Card For Numerical Methods For Engineers
7th Edition
ISBN: 9781259168772
Author: Chapra, Steven, Canale, Raymond
Publisher: McGraw-Hill Education
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 21, Problem 2P

Evaluate the following integral:

0 3 ( 1 e 2 x ) d x

(a) Analytically;

(b) Single application of the trapezoidal rule;

(c) Multiple-application trapezoidal rule, with n = 2 and 4;

(d) Single application of Simpson's 1/3 rule;

(e) Multiple-applicationSimpson's 1/3 rule, with n = 4 ;

(f) Single application of Simpson's3/8 rule; and

(g) Multiple-application Simpson's rule, with n = 5 .

For each of the numerical estimates (b) through (g), determine the percent relative error based on (a).

(a)

Expert Solution
Check Mark
To determine

To calculate: The value of the integral 03(1e2x)dx analytically.

Answer to Problem 2P

Solution:

03(1e2x)dx=2.501239

Explanation of Solution

Given Information:

The integral, 03(1e2x)dx

Formula used:

abf(x)dx=[F(x)]ab=F(b)F(a)

Here, F(x) is integrand of f(x).

Calculation:

Consider the integral,

03(1e2x)dx

The value of the integral is,

03(1e2x)dx=[x+12e2x]03=[(3)+12e2(3)(0)12e2(0)]=(3+0.5e60.5)=2.501239

Therefore, the value of the integral is 03(1e2x)dx=2.501239

(b)

Expert Solution
Check Mark
To determine

To calculate: The value of the integral 03(1e2x)dx with the help of single applicationversion of the Trapezoidal rule.

Answer to Problem 2P

Solution:

03(1e2x)dx=1.496282 with percent relative error 40.18%

Explanation of Solution

Given Information:

The integral, 03(1e2x)dx

The exact value of the integral 03(1e2x)dx=2.501239

Formula used:

Single application version of Trapezoidal rule: If I=abf(x)dx any integral, then the value of the integral is,

I=(ba)[f(a)+f(b)2].

Percentage error is,

% error=|exact value  numerical valueexact value|×100

Calculation:

Consider the integral,

I=03(1e2x)dx

Single application version of Trapezoidal rule is,

I=(ba)[f(a)+f(b)2]

And Percentage error=|exact value  numerical valueexact value|×100

The value of the integral is,

03(1e2x)dx=2.501239=(30)[(1e2(3))+(1e2(0))2]=3[1e62]=1.496282

And Percentage error is,

% error=|exact value  numerical valueexact value|×100=|2.5012391.4962822.501239|×100=40.18%

Therefore, 03(1e2x)dx=1.496282 with percent relative error 40.18%

(c)

Expert Solution
Check Mark
To determine

To calculate: The value of the integral 03(1e2x)dx with the help of multiple application version of the Trapezoidal rule, with n=2 and 4.

Answer to Problem 2P

Solution:

03(1e2x)dx=2.17346 with percent relative error 13.10% when n=2 and 03(1e2x)dx=2.411051 with percent relative error 3.61% when n=4

Explanation of Solution

Given Information:

The integral, I=03(1e2x)dx

The exact value of the integral 03(1e2x)dx=2.501239

Formula used:

Multiple application version of Trapezoidal rule: If I=abf(x)dx any integral, then the value of the integral is

I=h2[f(x0)+2i=1n1f(xi)+f(xn)].

Here, h=ban is the step size and xi+1=xi+h ; i=0,1,2,...

Percentage error is,

% error=|exact value  numerical valueexact value|×100

Calculation:

Consider the integral,

I=03(1e2x)dx

Here, the function is,

f(x)=1e2x

Multiple application version of Trapezoidal rule is,

I=h2[f(x0)+2i=1n1f(xi)+f(xn)]

When n=2,

h=302=1.5

Here, x0=0

The value of the function at x0=0 is,

f(0)=1e2(0)=0

The value of x1 is,

x1=x0+h=0+1.5=1.5

The value of the function at x1=1.5 is,

f(1.5)=1e2(1.5)=1e3=0.950213

The value of x2 is,

x2=x1+h=1.5+1.5=3

The value of the function at x2=3,

f(3)=1e2(3)=1e6=0.997521

Thus, the value of the integral is,

03(1e2x)dx=h2[f(x0)+2f(x1)+f(x2)]=1.52[0+2(0.950213)+0.997521]=2.17346

Percentage error is,

% error=|exact value  numerical valueexact value|×100=|2.5012392.173462.501239|×100=13.10%

Multiple application version of Trapezoidal rule is,

I=h2[f(x0)+2i=1n1f(xi)+f(xn)]

When n=4,

h=304=0.75

Here, x0=0

The value of the function at x0=0 is,

f(0)=1e2(0)=0

The value of x1 is,

x1=x0+h=0+0.75=0.75

The value of the function at x1=0.75 is,

f(0.75)=1e2(0.75)=0.77687

The value of x2 is,

x2=x1+h=0.75+0.75=1.5

The value of the function at x2=1.5,

f(1.5)=1e2(1.5)=0.950213

The value of x3 is,

x3=x2+h=1.5+0.75=2.25

The value of the function at x3=2.25 is,

f(2.25)=1e2(2.25)=0.988891

The value of x4 is,

x4=x3+h=2.25+0.75=3

The value of the function at x4=3 is,

f(3)=1e2(3)=0.997521

Thus, the value of the integral is,

03(1e2x)dx=h2[f(x0)+2(f(x1)+f(x2)+f(x3))+f(x4)]=0.752[0+2(0.77687+0.950213+0.997521)+0.997521]=2.411051

Percentage error is,

% error=|exact value  numerical valueexact value|×100=|2.5012392.4110512.501239|×100=3.61%

Therefore, the value of the integral when n=2 is 03(1e2x)dx=2.17346 with percent relative error 13.10% and the value of the integral when n=4 is 03(1e2x)dx=2.411051 with percent relative error is 3.61%

(d)

Expert Solution
Check Mark
To determine

To calculate: The value of the integral 03(1e2x)dx with the help of single application version of the Simpson’s 13rd rule.

Answer to Problem 2P

Solution:

03(1e2x)dx=2.399186 with the percent relative error 4.08%

Explanation of Solution

Given Information:

The integral, 03(1e2x)dx

The exact value of the integral 03(1e2x)dx=2.501239

Formula used:

Single application version of Simpson’s 13rd rule: If I=abf(x)dx any integral, then the value of the integral is

I=h3[f(x0)+4f(x1)+f(x2)].

Here, h=ban is the step size and xi+1=xi+h ; i=0,1,2,...

Percentage error is,

% error=|exact value  numerical valueexact value|×100

Calculation:

Consider the integral,

I=03(1e2x)dx

Here, the function is,

f(x)=1e2x

Single application version of Simpson’s 13rd rule is,

I=h3[f(x0)+4f(x1)+f(x2)]

Here, n=2,

h=302=1.5

Here, x0=0

The value of the function at x0=0 is,

f(0)=1e2(0)=0

The value of x1 is,

x1=x0+h=0+1.5=1.5

The value of the function at x1=1.5 is,

f(1.5)=1e2(1.5)=0.950213

The value of x2 is,

x2=x1+h=1.5+1.5=3

The value of the function at x2=3,

f(3)=1e2(3)=0.997521

Thus, the value of the integral is,

0π2(1e2x)dx=h3[f(x0)+4f(x1)+f(x2)]=1.53[0+4(0.95213)+0.997521]=2.399186

Percentage error is,

% error=|exact value  numerical valueexact value|×100=|2.5012392.3991862.501239|×100=4.08%

Therefore, the value of the integral when n=2 is 03(1e2x)dx=2.399186 with the percent relative error 4.08%

(e)

Expert Solution
Check Mark
To determine

To calculate: The value of the integral 03(1e2x)dx with the help of multiple application version of the Simpson’s 13rd rule.

Answer to Problem 2P

Solution:

03(1e2x)dx=2.490248 with percent relative error 0.44%

Explanation of Solution

Given Information:

The integral, 03(1e2x)dx

The exact value of the integral 03(1e2x)dx=2.501239

Formula used:

Multiple application version of Simpson’s 13rd rule: If I=abf(x)dx any integral, then the value of the integral is

I=h3[f(x0)+4i=1,3,5,...n1f(xi)+2j=2,4,6,...n2f(xj)+f(xn)].

Here, h=ban is the step size and xi+1=xi+h ; i=0,1,2,...

Percentage error is,

% error=|exact value  numerical valueexact value|×100

Calculation:

Consider the integral,

I=03(1e2x)dx

Here, the function is,

f(x)=1e2x

Multiple application version of Simpson’s 13rd rule is,

I=h3[f(x0)+4i=1,3,5,...n1f(xi)+2j=2,4,6,...n2f(xj)+f(xn)].

When n=4,

h=304=0.75

Here, x0=0

The value of the function at x0=0 is,

f(0)=1e2(0)=0

The value of x1 is,

x1=x0+h=0+0.75=0.75

The value of the function at x1=0.75 is,

f(0.75)=1e2(0.75)=0.77687

The value of x2 is,

x2=x1+h=0.75+0.75=1.5

The value of the function at x2=1.5,

f(1.5)=1e2(1.5)=0.950213

The value of x3 is,

x3=x2+h=1.50+0.75=2.25

The value of the function at x3=2.25 is,

f(2.25)=1e2(2.25)=0.988891

The value of x4 is,

x4=x3+h=2.25+0.75=3

The value of the function at x4=3 is,

f(3)=1e2(3)=0.997521

Thus, the value of the integral is,

03(1e2x)dx=h3[f(x0)+4(f(x1)+f(x3))+2f(x2)+f(x4)]=0.753[0+4(0.77687+0.988891)+2(0.950213)+0.997521]=2.490248

Percentage error is,

% error=|exact value  numerical valueexact value|×100=|2.5012392.4902482.501239|×100=0.44%

Therefore, the value of the integral when n=4 is 03(1e2x)dx=2.490248 with percent relative error 0.44%

(f)

Expert Solution
Check Mark
To determine

To calculate: The value of the integral 03(1e2x)dx with the help of single applicationversion of the Simpson’s 38th rule.

Answer to Problem 2P

Solution:

The value of the integral 03(1e2x)dx=2.451213 with percent relative error 2.00%

Explanation of Solution

Given Information:

The integral, 03(1e2x)dx

The exact value of the integral 03(1e2x)dx=2.501239

Formula used:

Single application version of Simpson’s 38th rule: If I=abf(x)dx any integral, then the value of the integral is

I=3h8[f(x0)+3(f(x1)+f(x2))+f(x3)].

Here, h=ban is the step size and xi+1=xi+h ; i=0,1,2,...

Percentage error is,

% error=|exact value  numerical valueexact value|×100

Calculation:

Consider the integral,

I=03(1e2x)dx

Here, the function is,

f(x)=1e2x

Single application version of Simpson’s 38th rule is,

I=3h8[f(x0)+3(f(x1)+f(x2))+f(x3)]

Here, n=3,

h=303=1

Here, x0=0

The value of the function at x0=0 is,

f(0)=1e2(0)=1

The value of x1 is,

x1=x0+h=0+1=1

The value of the function at x1=1 is,

f(1)=1e2(1)=0.864665

The value of x2 is,

x2=x1+h=1+1=2

The value of the function at x2=2,

f(2)=1e2(2)=0.981684

The value of x3 is,

x3=x2+h=2+1=3

The value of the function at x3=3,

f(3)=1e2(3)=0.997521

Thus, the value of the integral is,

03(1e2x)dx=3h8[f(x0)+3(f(x1)+f(x2))+f(x3)]=3(1)8[0+3(0.864665+0.981684)+0.997521]=2.451213

Percentage error is,

% error=|exact value  numerical valueexact value|×100=|2.5012392.4512132.501239|×100=2.00%

Therefore, the value of the integral when n=3 is 03(1e2x)dx=2.451213 with percent relative error 2.00%

(g)

Expert Solution
Check Mark
To determine

To calculate: The value of the integral 03(1e2x)dx with the help of multiple application version of the Simpson’s 38th rule with n=5.

Answer to Problem 2P

Solution:

The value of the integral 03(1e2x)dx=2.495933 with percent relative error 0.21%

Explanation of Solution

Given Information:

The integral, 03(1e2x)dx

The exact value of the integral 03(1e2x)dx=2.501239

Formula used:

Multiple application version of Simpson’s 38th rule for n=5: If I=abf(x)dx any integral, then the value of the integral is

I=Simpson's 13rd rule for first two segment + Simpson's 38th rule for last three segment.

Single application version of Simpson’s 13rd rule: If I=abf(x)dx any integral, then the value of the integral is

I=h3[f(x0)+4f(x1)+f(x2)].

Single application of Simpson’s 38th rule: If I=abf(x)dx any integral, then the value of the integral is

I=3h8[f(x0)+3(f(x1)+f(x2))+f(x3)].

Here, h=ban is the step size and xi+1=xi+h ; i=0,1,2,...

Percentage error is,

% error=|exact value  numerical valueexact value|×100

Calculation:

Consider the integral,

I=03(1e2x)dx

Here, the function is,

f(x)=1e2x

Multiple application version of Simpson’s 38th rule for n=5: If I=abf(x)dx any integral, then the value of the integral is

I=Simpson's 13rd rule for first two segment + Simpson's 38th rule for last three segment.

Here, n=5,

h=305=0.6

Here, x0=0

The value of the function at x0=0 is,

f(0)=1e2(0)=0

The value of x1 is,

x1=x0+h=0+0.6=0.6

The value of the function at x1=0.6 is,

f(0.6)=1e2(0.6)=0.698806

The value of x2 is,

x2=x1+h=0.6+0.6=1.2

The value of the function at x2=1.2,

f(1.2)=1e2(1.2)=0.909282

The value of x3 is,

x3=x2+h=1.2+0.6=1.8

The value of the function at x3=1.8,

f(1.8)=1e2(1.8)=0.972676

The value of x4 is,

x4=x3+h=1.8+0.6=2.4

The value of the function at x4=2.4,

f(2.4)=1e2(2.4)=0.99177

The value of x5 is,

x5=x4+h=2.4+0.6=3

The value of the function at x5=3,

f(3)=1e2(3)=0.997521

Thus, the value of the integral is,

03(1e2x)dx=h3[f(x0)+4f(x1)+f(x2)]+3h8[f(x2)+3(f(x3)+f(x4))+f(x5)]=0.63[0+4(0.698806)+0.909282]+3(0.6)8[0.99282+3(0.972676+0.99177)+0.997521]=0.740901+1.755032=2.495933

Percentage error is,

% error=|exact value  numerical valueexact value|×100=|2.5012392.495332.501239|×100=0.21%

Therefore, the value of the integral when n=3 is 03(1e2x)dx=2.495933 with percent relative error 0.21%

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
EXPERIMENTAL STUDY ON BERNOULLI’S THEOREM Aim: To test the Bernoulli equation by using a venturi meter. PLZ I want a perfect discussion and analysis for this experiment result with clear writing
How do you set up the integral? result should be147983 N thank you
Line sources m1 and m2 are near point A, as in Fig. If m1= 30 m2/2, find the value of m2 for which the resultantvelocity at point A is exactly vertical.

Chapter 21 Solutions

Connect 1-semester Access Card For Numerical Methods For Engineers

Knowledge Booster
Background pattern image
Advanced Math
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Numerical Integration Introduction l Trapezoidal Rule Simpson's 1/3 Rule l Simpson's 3/8 l GATE 2021; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=zadUB3NwFtQ;License: Standard YouTube License, CC-BY