Physics - With Connect Access
Physics - With Connect Access
3rd Edition
ISBN: 9781259601897
Author: GIAMBATTISTA
Publisher: MCG
bartleby

Videos

Question
Book Icon
Chapter 21, Problem 46P

(a)

To determine

The frequency of the RC circuit.

(a)

Expert Solution
Check Mark

Answer to Problem 46P

The frequency of the series RC circuit is 24Hz.

Explanation of Solution

The resistor with resistance of 3.3kΩ is connected in series with a capacitor of capacitance 2.0 μF. Both resistor and capacitor has the same rms voltage.

Write the expression for voltage drop across the resistor

  VR=IR                                                                     (I)

Here, VR is the voltage drop across the resistor, I is the current and R is the resistance.

Write the expression for voltage drop across the capacitor

  VC=IXC                                                                     (II)

Here, VC is the voltage drop across the capacitor, I is the current and XC is the reactance of the capacitor.

Write the expression for capacitive reactance

  XC=12πfC                                                                      (III)

Here, f is the frequency and C is the capacitance.

Substitute (III) in  (II)

  VC=I2πfC                                                                      (IV)

Equate (I) and (IV) since resistor and capacitor has the same rms voltage

  IR=I2πfC                                                                      (V)

Rearrange for f

  f=12πRC                                                                      (VI)

Substitute 3.3kΩ for R and 2.0 μF for C in (VI) to find f

  f=12π(3.3kΩ)(2.0 μF)=12π(3.3×103Ω)(2.0×106 F)1Ω1sF1=24Hz

Thus, the frequency of the series RC circuit is 24Hz.

(b)

To determine

The rms voltage of the resistor and capacitor as fraction of the source voltage.

(b)

Expert Solution
Check Mark

Answer to Problem 46P

The rms voltage of the resistor and capacitor as fraction of the source voltage is 12.

Explanation of Solution

The phasor diagram for the series RC circuit is given below:

Physics - With Connect Access, Chapter 21, Problem 46P

Write the expression for source voltage using the phasor diagram

  εm2=VR2+VC2                                                                     (VII)

Here, εm is the source voltage.

Substitute VR2 for VC2 in (VII)

  εm2=2VR2

Rearrange

  VR2εm2=12                                                                       (VIII)

Take square root on both sides

  VRεm=12                                                                     (IX)

Since both resistor and capacitor has the same rms voltage.

  VRεm=VCεm=12

Thus, the rms voltage of resistor and capacitor is not half the rms voltage of the source.

(c)

To determine

The phase angle between the source voltage and the current.

(c)

Expert Solution
Check Mark

Answer to Problem 46P

The phase angle between the voltage and current is 45°.

Explanation of Solution

Write the expression for phase angle

  cosϕ=RZ                                                                           (XI)

Here, ϕ is the phase angle and Z is the impedance.

Rearrange

  ϕ=cos1(RZ)                                                                    (XII)

Write the expression for impedance

  Z=R2+XC2                                                                   (XIII)

Substitute Z in (XIII).

  ϕ=cos1(RR2+XC2)

Multiply both numerator and denominator by I .

  ϕ=cos1(IR(IR)2+(IXC)2)                                         (XIV)

Substitute (I) and (II) in (XIV).

  ϕ=cos1(VRVR2+VC2)                                                    (XV)

Substitute (VII) in (XV).

  ϕ=cos1(VRεm)                                                            (XIV)

Substitute (IX) in (XV).

  ϕ=cos1(12)=45°                                                   (XIV)

Thus, the phase angle between the voltage and current is 45° i.e. current leads voltage by 45°.

(d)

To determine

The impedance of the series RC circuit.

(d)

Expert Solution
Check Mark

Answer to Problem 46P

The impedance is 4.7kΩ.

Explanation of Solution

Rearrange (XI)

  Z=Rcosϕ                                                                     (XV)

Substitute 3.3kΩ for R and 45° for ϕ in (XV).

  Z=3.3kΩcos45°=4.7kΩ

Thus, the impedance is 4.7kΩ.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!

Chapter 21 Solutions

Physics - With Connect Access

Ch. 21 - Prob. 1CQCh. 21 - 2. Electric power is distributed long distances...Ch. 21 - 3. Explain the differences between average...Ch. 21 - Prob. 4CQCh. 21 - Prob. 5CQCh. 21 - Prob. 6CQCh. 21 - Prob. 7CQCh. 21 - Prob. 8CQCh. 21 - Prob. 9CQCh. 21 - Prob. 10CQCh. 21 - Prob. 11CQCh. 21 - Prob. 12CQCh. 21 - Prob. 13CQCh. 21 - Prob. 14CQCh. 21 - Prob. 15CQCh. 21 - Prob. 16CQCh. 21 - Prob. 17CQCh. 21 - 18. Let’s examine the crossover network of Fig....Ch. 21 - Prob. 1MCQCh. 21 - Prob. 2MCQCh. 21 - Prob. 3MCQCh. 21 - Prob. 4MCQCh. 21 - Prob. 5MCQCh. 21 - Prob. 6MCQCh. 21 - Prob. 7MCQCh. 21 - Prob. 8MCQCh. 21 - Prob. 9MCQCh. 21 - 10. Which graph is correct if the circuit...Ch. 21 - 1. A lightbulb is connected to a 120 V (rms), 60...Ch. 21 - 3. A 1500 w heater runs on 120 V rms. What is the...Ch. 21 - 4. A circuit breaker trips when the rms current...Ch. 21 - 5. A 1500 W electric hair dryer is designed to...Ch. 21 - 6. A 4.0 kW heater is designed to be connected to...Ch. 21 - 7. (a) What rms current is drawn by a 4200 w...Ch. 21 - 8. A television set draws an rms current of 2.50 A...Ch. 21 - 9. The instantaneous sinusoidal emf from an ac...Ch. 21 - 10. A hair dryer has a power rating of 1200 W at...Ch. 21 - Prob. 11PCh. 21 - 12. A variable capacitor with negligible...Ch. 21 - 13. At what frequency is the reactance of a 6.0...Ch. 21 - 14. A 0.400 μF capacitor is connected across the...Ch. 21 - 15. A 0.250 μF capacitor is connected to a 220 V...Ch. 21 - 16. A capacitor is connected across the terminals...Ch. 21 - 17. Show, from XC = l/(ωC), that the units of...Ch. 21 - 18. The charge on a capacitor in an ac circuit is...Ch. 21 - 19. A capacitor (capacitance = C) is connected to...Ch. 21 - 20. Three capacitors (2.0 μF, 3.0 μF, 6.0 μF) are...Ch. 21 - 21. A capacitor and a resistor are connected in...Ch. 21 - 22. A variable inductor with negligible resistance...Ch. 21 - Prob. 23PCh. 21 - Prob. 24PCh. 21 - 25. A solenoid with a radius of 8.0 × 10−3 m and...Ch. 21 - 26. A 4.00 mH inductor is connected to an ac...Ch. 21 - 27. Two ideal inductors (0.10 H, 0.50 H) are...Ch. 21 - Prob. 28PCh. 21 - 29. Suppose that an ideal capacitor and an ideal...Ch. 21 - 30. The voltage across an inductor and the...Ch. 21 - 31. Make a figure analogous to Fig. 21.5 for an...Ch. 21 - 32. A 25.0 mH inductor, with internal resistance...Ch. 21 - 33. An inductor has an impedance of 30.0 Ω and a...Ch. 21 - 34. A 6.20 mH inductor is one of the elements in...Ch. 21 - 35. A series combination of a resistor and a...Ch. 21 - 36. A 300.0 Ω resistor and a 2.5 μF capacitor are...Ch. 21 - Prob. 37PCh. 21 - 38. (a) Find the power factor for the RLC series...Ch. 21 - 39. A computer draws an rms current of 2.80 A at...Ch. 21 - 40. An RLC series circuit is connected to an ac...Ch. 21 - 41. An ac circuit has a single resistor,...Ch. 21 - 42. An RLC circuit has a resistance of 10.0 Ω,...Ch. 21 - 43. An ac circuit contains a 12.5 Ω resistor, a...Ch. 21 - 44. ✦ A 0.48 μF capacitor is connected in series...Ch. 21 - 45. A series combination of a 22.0 mH inductor...Ch. 21 - Prob. 46PCh. 21 - 47. A 150 Ω resistor is in series with a 0.75...Ch. 21 - 48. A series circuit with a resistor and a...Ch. 21 - 49. (a) What is the reactance of a 10.0 mH...Ch. 21 - Prob. 50PCh. 21 - Prob. 51PCh. 21 - Prob. 52PCh. 21 - Prob. 53PCh. 21 - Prob. 54PCh. 21 - 55. To test hearing at various frequencies, a...Ch. 21 - Prob. 56PCh. 21 - Prob. 57PCh. 21 - Prob. 58PCh. 21 - Prob. 59PCh. 21 - Prob. 60PCh. 21 - Prob. 61PCh. 21 - Prob. 62PCh. 21 - Prob. 63PCh. 21 - Prob. 64PCh. 21 - Prob. 65PCh. 21 - Prob. 66PCh. 21 - Prob. 67PCh. 21 - Prob. 68PCh. 21 - Prob. 69PCh. 21 - 70. The phasor diagram for a particular RLC series...Ch. 21 - Prob. 71PCh. 21 - Prob. 72PCh. 21 - Prob. 73PCh. 21 - Prob. 74PCh. 21 - Prob. 75PCh. 21 - Prob. 76PCh. 21 - Prob. 77PCh. 21 - Prob. 78PCh. 21 - Prob. 79PCh. 21 - Prob. 80PCh. 21 - Prob. 81PCh. 21 - Prob. 82PCh. 21 - Prob. 83PCh. 21 - Prob. 84PCh. 21 - 85. (a) When the resistance of an RLC series...Ch. 21 - Prob. 86PCh. 21 - Prob. 87PCh. 21 - Prob. 88PCh. 21 - Prob. 89PCh. 21 - Prob. 90PCh. 21 - Prob. 91PCh. 21 - Prob. 92PCh. 21 - Prob. 93PCh. 21 - Prob. 94PCh. 21 - Prob. 95PCh. 21 - Prob. 96PCh. 21 - Prob. 97PCh. 21 - Prob. 98PCh. 21 - Prob. 99PCh. 21 - Prob. 100PCh. 21 - Prob. 101P
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Text book image
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
Text book image
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Introduction To Alternating Current; Author: Tutorials Point (India) Ltd;https://www.youtube.com/watch?v=0m142qAZZpE;License: Standard YouTube License, CC-BY