BuyFindarrow_forward

Elements Of Modern Algebra

8th Edition
Gilbert + 2 others
ISBN: 9781285463230

Solutions

Chapter
Section
BuyFindarrow_forward

Elements Of Modern Algebra

8th Edition
Gilbert + 2 others
ISBN: 9781285463230
Textbook Problem

Use Exercise 25 and generalized induction to prove that ( n r ) is an integer for all n and r with 0 r n

25 . Let a and b be a real number, and let n be integers with 0 r n . The binomial theorem states that

( a + b ) n = ( n 0 ) a n + ( n 1 ) a n 1 b + ( n 2 ) a n 2 b 2 + ... + ( n r ) a n r b r + ....... + ( n n 2 ) a 2 b n 2 + ( n n 1 ) a b n 1 + ( n n ) b n

= r = 0 n ( n r ) a n r b r

Where the binomial coefficients ( n r ) are defined by

( n r ) = n ! ( n r ) ! r ! ,

With r ! = r ( r 1 ) ......... ( 2 ) ( 1 ) for r 1 and 0 ! = 1 . Prove that the binomial coefficients satisfy the equation

( n r 1 ) + ( n r ) = ( n + 1 r ) for 1 r n

This equation generates all the “"interior “"entries (printed in bold) of Pascal’'s triangle.

1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 1 0 1 0 5 1

To determine

To prove: (nr) is an integer for all integers n and r with 0rn by using generalized induction.

Explanation

Given information:

Let a and b are real numbers, and let n and r be integers with 0rn, the binomial theorem states that,

(a+b)n=(n0)an+(n1)an1b+(n2)an2b2++(nr)anrbr++(nn)bn

=r=0n(nr)anrbr

Where the binomial coefficients (nr) are defined by (nr)=n!(nr)!r!

with r!=r(r1)(2)(1) for r1 and 0!=1.

Formula used:

(i) Strategy: Proof by Generalized Induction

1. Basic Step: The statement is verified for n=a.

2. Induction Hypothesis: The statement is assumed true for n=k, where ka.

3. Inductive Step: With this assumption made, the statement is then proved to be true for n=k+1.

(ii) (nr1)+(nr)=(n+1r) for 1rn.

Proof:

Consider the statement, “ (nr) is an integer for all integers n and r with 0rn

For r=0

By using (nr)=n!(nr)!r!,

(n0)=n!(n0)!0!

As 0!=1,

(n0)=n!(n)!1=1

Thus, (n0)=1

Therefore, the statement is true for r=0

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started
Sect-2.1 P-1ESect-2.1 P-2ESect-2.1 P-3ESect-2.1 P-4ESect-2.1 P-5ESect-2.1 P-6ESect-2.1 P-7ESect-2.1 P-8ESect-2.1 P-9ESect-2.1 P-10ESect-2.1 P-11ESect-2.1 P-12ESect-2.1 P-13ESect-2.1 P-14ESect-2.1 P-15ESect-2.1 P-16ESect-2.1 P-17ESect-2.1 P-18ESect-2.1 P-19ESect-2.1 P-20ESect-2.1 P-21ESect-2.1 P-22ESect-2.1 P-23ESect-2.1 P-24ESect-2.1 P-25ESect-2.1 P-26ESect-2.1 P-27ESect-2.1 P-28ESect-2.1 P-29ESect-2.1 P-30ESect-2.1 P-31ESect-2.1 P-32ESect-2.1 P-33ESect-2.1 P-34ESect-2.1 P-35ESect-2.2 P-1ESect-2.2 P-2ESect-2.2 P-3ESect-2.2 P-4ESect-2.2 P-5ESect-2.2 P-6ESect-2.2 P-7ESect-2.2 P-8ESect-2.2 P-9ESect-2.2 P-10ESect-2.2 P-11ESect-2.2 P-12ESect-2.2 P-13ESect-2.2 P-14ESect-2.2 P-15ESect-2.2 P-16ESect-2.2 P-17ESect-2.2 P-18ESect-2.2 P-19ESect-2.2 P-20ESect-2.2 P-21ESect-2.2 P-22ESect-2.2 P-23ESect-2.2 P-24ESect-2.2 P-25ESect-2.2 P-26ESect-2.2 P-27ESect-2.2 P-28ESect-2.2 P-29ESect-2.2 P-30ESect-2.2 P-31ESect-2.2 P-32ESect-2.2 P-33ESect-2.2 P-34ESect-2.2 P-35ESect-2.2 P-36ESect-2.2 P-37ESect-2.2 P-38ESect-2.2 P-39ESect-2.2 P-40ESect-2.2 P-41ESect-2.2 P-42ESect-2.2 P-43ESect-2.2 P-44ESect-2.2 P-45ESect-2.2 P-46ESect-2.2 P-47ESect-2.2 P-48ESect-2.2 P-49ESect-2.2 P-50ESect-2.2 P-51ESect-2.2 P-52ESect-2.2 P-53ESect-2.2 P-54ESect-2.2 P-55ESect-2.2 P-56ESect-2.2 P-57ESect-2.3 P-1TFESect-2.3 P-2TFESect-2.3 P-3TFESect-2.3 P-4TFESect-2.3 P-5TFESect-2.3 P-6TFESect-2.3 P-7TFESect-2.3 P-8TFESect-2.3 P-9TFESect-2.3 P-10TFESect-2.3 P-1ESect-2.3 P-2ESect-2.3 P-3ESect-2.3 P-4ESect-2.3 P-5ESect-2.3 P-6ESect-2.3 P-7ESect-2.3 P-8ESect-2.3 P-9ESect-2.3 P-10ESect-2.3 P-11ESect-2.3 P-12ESect-2.3 P-13ESect-2.3 P-14ESect-2.3 P-15ESect-2.3 P-16ESect-2.3 P-17ESect-2.3 P-18ESect-2.3 P-19ESect-2.3 P-20ESect-2.3 P-21ESect-2.3 P-22ESect-2.3 P-23ESect-2.3 P-24ESect-2.3 P-25ESect-2.3 P-26ESect-2.3 P-27ESect-2.3 P-28ESect-2.3 P-29ESect-2.3 P-30ESect-2.3 P-31ESect-2.3 P-32ESect-2.3 P-33ESect-2.3 P-34ESect-2.3 P-35ESect-2.3 P-36ESect-2.3 P-37ESect-2.3 P-38ESect-2.3 P-39ESect-2.3 P-40ESect-2.3 P-41ESect-2.3 P-42ESect-2.3 P-43ESect-2.3 P-44ESect-2.3 P-45ESect-2.3 P-46ESect-2.3 P-47ESect-2.3 P-48ESect-2.3 P-49ESect-2.4 P-1TFESect-2.4 P-2TFESect-2.4 P-3TFESect-2.4 P-4TFESect-2.4 P-5TFESect-2.4 P-6TFESect-2.4 P-7TFESect-2.4 P-8TFESect-2.4 P-9TFESect-2.4 P-10TFESect-2.4 P-11TFESect-2.4 P-12TFESect-2.4 P-13TFESect-2.4 P-1ESect-2.4 P-2ESect-2.4 P-3ESect-2.4 P-4ESect-2.4 P-5ESect-2.4 P-6ESect-2.4 P-7ESect-2.4 P-8ESect-2.4 P-9ESect-2.4 P-10ESect-2.4 P-11ESect-2.4 P-12ESect-2.4 P-13ESect-2.4 P-14ESect-2.4 P-15ESect-2.4 P-16ESect-2.4 P-17ESect-2.4 P-18ESect-2.4 P-19ESect-2.4 P-20ESect-2.4 P-21ESect-2.4 P-22ESect-2.4 P-23ESect-2.4 P-24ESect-2.4 P-25ESect-2.4 P-26ESect-2.4 P-27ESect-2.4 P-28ESect-2.4 P-29ESect-2.4 P-30ESect-2.4 P-31ESect-2.4 P-32ESect-2.4 P-33ESect-2.4 P-34ESect-2.4 P-35ESect-2.5 P-1TFESect-2.5 P-2TFESect-2.5 P-3TFESect-2.5 P-4TFESect-2.5 P-5TFESect-2.5 P-6TFESect-2.5 P-7TFESect-2.5 P-1ESect-2.5 P-2ESect-2.5 P-3ESect-2.5 P-4ESect-2.5 P-5ESect-2.5 P-6ESect-2.5 P-7ESect-2.5 P-8ESect-2.5 P-9ESect-2.5 P-10ESect-2.5 P-11ESect-2.5 P-12ESect-2.5 P-13ESect-2.5 P-14ESect-2.5 P-15ESect-2.5 P-16ESect-2.5 P-17ESect-2.5 P-18ESect-2.5 P-19ESect-2.5 P-20ESect-2.5 P-21ESect-2.5 P-22ESect-2.5 P-23ESect-2.5 P-24ESect-2.5 P-25ESect-2.5 P-26ESect-2.5 P-27ESect-2.5 P-28ESect-2.5 P-29ESect-2.5 P-30ESect-2.5 P-31ESect-2.5 P-32ESect-2.5 P-33ESect-2.5 P-34ESect-2.5 P-35ESect-2.5 P-36ESect-2.5 P-37ESect-2.5 P-38ESect-2.5 P-39ESect-2.5 P-40ESect-2.5 P-41ESect-2.5 P-42ESect-2.5 P-43ESect-2.5 P-44ESect-2.5 P-45ESect-2.5 P-46ESect-2.5 P-47ESect-2.5 P-48ESect-2.5 P-49ESect-2.5 P-50ESect-2.5 P-51ESect-2.5 P-52ESect-2.5 P-53ESect-2.5 P-54ESect-2.5 P-55ESect-2.5 P-56ESect-2.5 P-57ESect-2.5 P-58ESect-2.6 P-1TFESect-2.6 P-2TFESect-2.6 P-3TFESect-2.6 P-4TFESect-2.6 P-5TFESect-2.6 P-6TFESect-2.6 P-7TFESect-2.6 P-8TFESect-2.6 P-1ESect-2.6 P-2ESect-2.6 P-3ESect-2.6 P-4ESect-2.6 P-5ESect-2.6 P-6ESect-2.6 P-7ESect-2.6 P-8ESect-2.6 P-9ESect-2.6 P-10ESect-2.6 P-11ESect-2.6 P-12ESect-2.6 P-13ESect-2.6 P-14ESect-2.6 P-15ESect-2.6 P-16ESect-2.6 P-17ESect-2.6 P-18ESect-2.6 P-19ESect-2.6 P-20ESect-2.6 P-21ESect-2.6 P-22ESect-2.6 P-23ESect-2.6 P-24ESect-2.6 P-25ESect-2.6 P-26ESect-2.7 P-1TFESect-2.7 P-2TFESect-2.7 P-3TFESect-2.7 P-4TFESect-2.7 P-1ESect-2.7 P-2ESect-2.7 P-3ESect-2.7 P-4ESect-2.7 P-5ESect-2.7 P-6ESect-2.7 P-7ESect-2.7 P-8ESect-2.7 P-9ESect-2.7 P-10ESect-2.7 P-11ESect-2.7 P-12ESect-2.7 P-13ESect-2.7 P-14ESect-2.7 P-15ESect-2.7 P-16ESect-2.7 P-17ESect-2.7 P-18ESect-2.7 P-19ESect-2.7 P-20ESect-2.7 P-21ESect-2.7 P-22ESect-2.7 P-23ESect-2.7 P-24ESect-2.7 P-25ESect-2.7 P-26ESect-2.8 P-1TFESect-2.8 P-2TFESect-2.8 P-3TFESect-2.8 P-1ESect-2.8 P-2ESect-2.8 P-3ESect-2.8 P-4ESect-2.8 P-5ESect-2.8 P-6ESect-2.8 P-7ESect-2.8 P-8ESect-2.8 P-9ESect-2.8 P-10ESect-2.8 P-11ESect-2.8 P-12ESect-2.8 P-13ESect-2.8 P-14ESect-2.8 P-15ESect-2.8 P-16ESect-2.8 P-17ESect-2.8 P-18ESect-2.8 P-19ESect-2.8 P-20ESect-2.8 P-21ESect-2.8 P-22ESect-2.8 P-23ESect-2.8 P-24ESect-2.8 P-25ESect-2.8 P-26E

Additional Math Solutions

Find more solutions based on key concepts

Show solutions add

Simplify each expression. 6+2

Trigonometry (MindTap Course List)

In Exercises 914, evaluate the expression. 9. (94)3/2

Applied Calculus for the Managerial, Life, and Social Sciences: A Brief Approach

Determine the infinite limit. limx0(lnx2x2)

Calculus: Early Transcendentals

Evaluate each expression: 4(3)(6)(18)3

Elementary Technical Mathematics

Sometimes, Always, or Never: If for all n and both {an} and {cn} converge, then{bn} converges.

Study Guide for Stewart's Single Variable Calculus: Early Transcendentals, 8th

The distance from (1, 2, 1) to the plane 6x + 5y + 8z = 34 is:

Study Guide for Stewart's Multivariable Calculus, 8th