bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 23, Problem 4P

The electric field along the axis of a uniformly charged disk of radius R and total charge Q was calculated in Example 23.3. Show that the electric field at distances x that are large compared with R approaches that of a particle with charge Q = σπR2. Suggestion: First show that x/(x2 + R2)1/2 = (1 + R2/x2)−1/2 and use the binomial expansion (1 + δ)n = 1 + , when δ << 1.

Blurred answer
03:59
Students have asked these similar questions
The electric field is zero everywhere except in the region 0≤x≤4.00 cm, where there is a uniform electric field of 110 N/C in the +y direction. A proton is moving in the +x direction with a speed of v = 1.00×10^6 m/s. When the proton passes through the region 0≤x≤4.00 cm, the electric field exerts a force on it. 1)When the x coordinate of the proton’s position is 4.00 cm, what is the x component of its velocity? (Express your answer to three significant figures.) 2)When the x coordinate of the proton’s position is 4.00 cm, what is the y component of its velocity?(Express your answer to three significant figures.) 3)When the x coordinate of its position equals 10.0 cm, what is the y component of its velocity? (Express your answer to three significant figures.)
A neutral solid metal sphere of radius 0.1 m is at the origin, polarized by a point charge of 4 ✕ 10−8 C at location <−0.6, 0, 0> m.  At location <0, 0.08, 0> m, what is the electric field contributed by the polarization charges on the surface of the metal sphere? (Express your answer in vector form.)
The electric field is zero everywhere except in the region 0≤x≤4.00 cm, where there is a uniform electric field of 110 N/C in the +y direction. A proton is moving in the +x direction with a speed of v = 1.00×10^6 m/s. When the proton passes through the region 0≤x≤4.00 cm, the electric field exerts a force on it.   1)When the x coordinate of the proton’s position is 4.00 cm, what is the y component of its velocity?(Express your answer to three significant figures.)

Chapter 23 Solutions

Bundle: Physics for Scientists and Engineers, Volume 2, Loose-leaf Version, 10th + WebAssign Printed Access Card for Serway/Jewett's Physics for Scientists and Engineers, 10th, Multi-Term

Ch. 23 - (a) Consider a uniformly charged, thin-walled,...Ch. 23 - A vertical electric field of magnitude 2.00 104...Ch. 23 - A flat surface of area 3.20 m2 is rotated in a...Ch. 23 - A nonuniform electric field is given by the...Ch. 23 - An uncharged, nonconducting, hollow sphere of...Ch. 23 - Find the net electric flux through the spherical...Ch. 23 - Four closed surfaces, S1 through S4 together with...Ch. 23 - A charge of 170 C is at the center of a cube of...Ch. 23 - (a) Find the net electric flux through the cube...Ch. 23 - A particle with charge of 12.0 C is placed at the...Ch. 23 - A particle with charge Q = 5.00 C is located at...Ch. 23 - A particle with charge Q is located at the center...Ch. 23 - (a) A panicle with charge q is located a distance...Ch. 23 - Find the net electric flux through (a) the closed...Ch. 23 - Figure P23.23 represents the top view of a cubic...Ch. 23 - Determine the magnitude of the electric field at...Ch. 23 - In nuclear fission, a nucleus of uranium-238,...Ch. 23 - Suppose you fill two rubber balloons with air,...Ch. 23 - A large, flat, horizontal sheet of charge has a...Ch. 23 - A nonconducting wall carries charge with a uniform...Ch. 23 - A uniformly charged, straight filament 7.00 m in...Ch. 23 - You are working on a laboratory device that...Ch. 23 - Consider a long, cylindrical charge distribution...Ch. 23 - Assume the magnitude of the electric field on each...Ch. 23 - A solid sphere of radius 40.0 cm has a total...Ch. 23 - A cylindrical shell of radius 7.00 cm and length...Ch. 23 - You are working for the summer at a research...Ch. 23 - You are working for the summer at a research...Ch. 23 - Find the electric flux through the plane surface...Ch. 23 - Three solid plastic cylinders all have radius 2.50...Ch. 23 - A line of charge starts at x = +x0 and extends to...Ch. 23 - Show that the maximum magnitude Emax of the...Ch. 23 - A line of positive charge is formed into a...Ch. 23 - A very large conducting plate lying in the xy...Ch. 23 - A sphere of radius R = 1.00 m surrounds a particle...Ch. 23 - A sphere of radius R surrounds a particle with...Ch. 23 - A slab of insulating material has a nonuniform...Ch. 23 - A sphere of radius 2a is made of a nonconducting...Ch. 23 - An infinitely long insulating cylinder of radius R...Ch. 23 - A particle with charge Q is located on the axis of...Ch. 23 - Review. A slab of insulating material (infinite in...Ch. 23 - Identical thin rods of length 2a carry equal...Ch. 23 - A solid insulating sphere of radius R has a...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY