Physics
Physics
3rd Edition
ISBN: 9780073512150
Author: Alan Giambattista, Betty Richardson, Robert C. Richardson Dr.
Publisher: McGraw-Hill Education
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 23, Problem 77P

(a)

To determine

The angle between the refracted ray and the glass surface.

(a)

Expert Solution
Check Mark

Answer to Problem 77P

The angle θ1 is 50.1°.

Explanation of Solution

The angle of between the incident ray and the glass surface is 30° and refractive index of the glass is 1.35.

Physics, Chapter 23, Problem 77P

Write the expression for Snell’s law

  nisinθi=nrsinθr                                                                    (I)

Here, θi is the angle between surface normal and the incident ray, θr is the angle between surface normal and the refracted ray, ni is the refractive index of the air and nr is the refractive index of the glass.

Substitute 90°30° for θi, 90°θ1 for θr, 1.00 for ni and 1.35 for nr in (I)

  (1.00)sin(90°30°)=(1.35)sin(90°θ1)                                      (II)

Rewrite

  (1.00)sin(60°)=(1.35)cosθ1

Solve for θ1

  θ1=cos1[(1.00)sin(60°)(1.35)]=50.1°

Thus, the angle θ1 is 50.1°.

(b)

To determine

The critical angle between glass and air.

(b)

Expert Solution
Check Mark

Answer to Problem 77P

The critical angle between glass and air is 53°.

Explanation of Solution

Write the expression for critical angle between glass and air using Snell’s law

  nrsinθc=nisin90°                                                                    (III)

Here, θc is the critical angle.

Rearrange for θc

  θc=sin1ninr                                                                   (IV)

Substitute 1.00 for ni and 1.35 for nr in (IV) to find θc

  θc=sin1(1.001.35)=47.8°

Thus, the critical angle between glass and air is 53°.

(c)

To determine

The path of light.

(c)

Expert Solution
Check Mark

Answer to Problem 77P

The light follows path A only.

Explanation of Solution

The angle of incidence at the bottom horizontal surface is same as θ1 and θ1<θc.

Since the angle of incidence is greater than the critical angle, the ray undergoes total internal reflection at the surface and hence there is no transmitted ray.

Thus, the light follows path A and not path B given in the figure.

(d)

To determine

The angle θA and θB for the given path of light.

(d)

Expert Solution
Check Mark

Answer to Problem 77P

The angle θA is 39.9°.

Explanation of Solution

The light doesn’t follow path B because of total internal reflection.

Write the expression for the angle θA using the above figure.

  θA+θ1=90°

Rearrange for θA

  θA=90°θ1                                                                     (V)

Substitute 50.1° for θ1 in (V) to find θA

  θA=90°50.1°=39.9°

Thus, the angle θA is 39.9°.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!

Chapter 23 Solutions

Physics

Ch. 23.8 - Prob. 23.7PPCh. 23.9 - Prob. 23.9CPCh. 23.9 - Prob. 23.8PPCh. 23.9 - Prob. 23.9PPCh. 23 - Prob. 1CQCh. 23 - Prob. 2CQCh. 23 - Prob. 3CQCh. 23 - Prob. 4CQCh. 23 - Prob. 5CQCh. 23 - Prob. 6CQCh. 23 - Prob. 7CQCh. 23 - Prob. 8CQCh. 23 - Prob. 9CQCh. 23 - Prob. 10CQCh. 23 - 11. Why is the passenger's side mirror in many...Ch. 23 - Prob. 12CQCh. 23 - Prob. 13CQCh. 23 - Prob. 14CQCh. 23 - Prob. 15CQCh. 23 - Prob. 16CQCh. 23 - Prob. 17CQCh. 23 - Prob. 18CQCh. 23 - Prob. 19CQCh. 23 - Prob. 20CQCh. 23 - Prob. 21CQCh. 23 - 22. A converging lens made from dense flint glass...Ch. 23 - Prob. 23CQCh. 23 - Prob. 24CQCh. 23 - Prob. 25CQCh. 23 - Prob. 26CQCh. 23 - Prob. 27CQCh. 23 - Prob. 1MCQCh. 23 - 2. The image of a slide formed by a slide...Ch. 23 - Prob. 3MCQCh. 23 - Prob. 4MCQCh. 23 - Prob. 5MCQCh. 23 - Prob. 6MCQCh. 23 - Prob. 7MCQCh. 23 - Prob. 8MCQCh. 23 - Prob. 9MCQCh. 23 - Prob. 10MCQCh. 23 - Prob. 1PCh. 23 - Prob. 2PCh. 23 - Prob. 3PCh. 23 - Prob. 4PCh. 23 - Prob. 5PCh. 23 - Prob. 6PCh. 23 - Prob. 7PCh. 23 - Prob. 8PCh. 23 - Prob. 9PCh. 23 - 10. The index of refraction of Sophia’s cornea is...Ch. 23 - 11. The index of refraction of Aidan’s cornea is...Ch. 23 - Prob. 12PCh. 23 - Prob. 13PCh. 23 - Prob. 14PCh. 23 - Prob. 15PCh. 23 - Prob. 16PCh. 23 - Prob. 17PCh. 23 - Prob. 18PCh. 23 - Prob. 19PCh. 23 - Prob. 20PCh. 23 - Prob. 21PCh. 23 - Prob. 22PCh. 23 - Prob. 23PCh. 23 - Prob. 24PCh. 23 - Prob. 25PCh. 23 - Prob. 26PCh. 23 - Prob. 27PCh. 23 - Prob. 28PCh. 23 - Prob. 29PCh. 23 - Prob. 30PCh. 23 - Prob. 31PCh. 23 - Prob. 32PCh. 23 - Prob. 33PCh. 23 - Prob. 34PCh. 23 - Prob. 35PCh. 23 - Prob. 36PCh. 23 - Prob. 37PCh. 23 - Prob. 38PCh. 23 - Prob. 39PCh. 23 - Prob. 40PCh. 23 - Prob. 41PCh. 23 - Prob. 42PCh. 23 - 43. In an amusement park maze with all the walls...Ch. 23 - Prob. 44PCh. 23 - Prob. 45PCh. 23 - Prob. 46PCh. 23 - Prob. 47PCh. 23 - Prob. 48PCh. 23 - Prob. 49PCh. 23 - Prob. 50PCh. 23 - Prob. 51PCh. 23 - Prob. 52PCh. 23 - Prob. 53PCh. 23 - Prob. 54PCh. 23 - Prob. 55PCh. 23 - Prob. 56PCh. 23 - Prob. 57PCh. 23 - Prob. 58PCh. 23 - 59. (a) For a converging lens with a focal length...Ch. 23 - Prob. 60PCh. 23 - Prob. 61PCh. 23 - Prob. 62PCh. 23 - Prob. 63PCh. 23 - Prob. 64PCh. 23 - Prob. 65PCh. 23 - Prob. 66PCh. 23 - Prob. 67PCh. 23 - Prob. 68PCh. 23 - Prob. 69PCh. 23 - Prob. 70PCh. 23 - Prob. 71PCh. 23 - Prob. 72PCh. 23 - Prob. 73PCh. 23 - Prob. 74PCh. 23 - Prob. 75PCh. 23 - Prob. 76PCh. 23 - Prob. 77PCh. 23 - Prob. 78PCh. 23 - Prob. 79PCh. 23 - Prob. 80PCh. 23 - Prob. 81PCh. 23 - Prob. 82PCh. 23 - Prob. 83PCh. 23 - Prob. 84PCh. 23 - Prob. 85PCh. 23 - Prob. 86PCh. 23 - Prob. 87PCh. 23 - Prob. 88PCh. 23 - Prob. 89PCh. 23 - Prob. 90PCh. 23 - Prob. 91PCh. 23 - Prob. 92PCh. 23 - Prob. 93PCh. 23 - Prob. 94PCh. 23 - Prob. 95PCh. 23 - Prob. 96PCh. 23 - Prob. 97PCh. 23 - Prob. 98PCh. 23 - Prob. 99PCh. 23 - Prob. 100PCh. 23 - Prob. 101P
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Text book image
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
Text book image
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Laws of Refraction of Light | Don't Memorise; Author: Don't Memorise;https://www.youtube.com/watch?v=4l2thi5_84o;License: Standard YouTube License, CC-BY