Numerical Methods for Engineers
Numerical Methods for Engineers
7th Edition
ISBN: 9780073397924
Author: Steven C. Chapra Dr., Raymond P. Canale
Publisher: McGraw-Hill Education
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 24, Problem 31P

Faraday's law characterizes the voltage drop across an inductor as

V L = L d i d t

Where V L = voltage drop ( V ) , L = industance  ( in henrys; 1 H = 1 V s/A ) , i = current ( A ) , and  t =time  ( s ) . Determine the voltage drop as a function of time from the following data for an inductance of 4 H.

t 0 0.1 0.2 0.3 0.5 0.7
i 0 0.16 0.32 0.56 0.84 2.0
Blurred answer

Chapter 24 Solutions

Numerical Methods for Engineers

Ch. 24 - One of your colleagues has designed a new...Ch. 24 - Video an giography is used to measure blood flow...Ch. 24 - 24.14 Perform the same computation as in Sec....Ch. 24 - Perform the same computation as in Sec. 24.2, but...Ch. 24 - 24.16 As in Sec. 24.2, compute F using the...Ch. 24 - Stream cross-sectional areas (A) are required for...Ch. 24 - 24.18 As described in Prob. 24.17, the...Ch. 24 - 24.21 A transportation engineering study requires...Ch. 24 - 24.22 A wind force distributed against the side of...Ch. 24 - 24.23 Water exerts pressure on the upstream ...Ch. 24 - 24.24 To estimate the size of a new dam, you have...Ch. 24 - The data listed in the following table gives...Ch. 24 - The heat flux q is the quantity of heat flowing...Ch. 24 - 24.27 The horizontal surface area of a lake at a...Ch. 24 - 24.28 Perform the same computation as in Sec....Ch. 24 - 24.29 Repeat Prob. 24.28, but use five...Ch. 24 - Repeat Prob. 24.28, but use Romberg integration to...Ch. 24 - Faradays law characterizes the voltage drop across...Ch. 24 - 24.32 Based on Faraday’s law (Prob. 24.31), use...Ch. 24 - Suppose that the current through a resistor is...Ch. 24 - If a capacitor initially holds no charge, the...Ch. 24 - 24.35 Perform the same computation as in Sec....Ch. 24 - 24.36 Repeat Prob. 24.35, but use (a) Simpson’s ...Ch. 24 - 24.37 Compute work as described in Sec. 24.4, but...Ch. 24 - As was done in Sec. 24.4, determine the work...Ch. 24 - 24.39 The work done on an object is equal to the...Ch. 24 - The rate of cooling of a body (Fig. P24.40) can be...Ch. 24 - 24.41 A rod subject to an axial load (Fig....Ch. 24 - If the velocity distribution of a fluid flowing...Ch. 24 - 24.43 Using the following data, calculate the work...Ch. 24 - 24.44 A jet fighter’s position on an aircraft...Ch. 24 - 24.45 Employ the multiple-application Simpson’s...Ch. 24 - The upward velocity of a rocket can be computed by...Ch. 24 - Referring to the data from Problem 20.61, find the...Ch. 24 - Fully developed flow moving through a 40-cm...Ch. 24 - Fully developed flow of a Bingham plasticfluid...Ch. 24 - 24.50 The enthalpy of a real gas is a ...Ch. 24 - Given the data below, find the isothermal work...Ch. 24 - 24.52 The Rosin-Rammler-Bennet (RRB) equation is...Ch. 24 - For fluid flow over a surface, the heat flux to...Ch. 24 - The pressure gradient for laminar flow through a...Ch. 24 - 24.55 Velocity data for air are collected at...
Knowledge Booster
Background pattern image
Advanced Math
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Area Between The Curve Problem No 1 - Applications Of Definite Integration - Diploma Maths II; Author: Ekeeda;https://www.youtube.com/watch?v=q3ZU0GnGaxA;License: Standard YouTube License, CC-BY