Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
5th Edition
ISBN: 9781133104261
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
Question
Book Icon
Chapter 24, Problem 74P

(a)

To determine

The unit of the equation is watts.

(a)

Expert Solution
Check Mark

Answer to Problem 74P

The unit of the equation on the right hand side is watts.

Explanation of Solution

Given info: The equation of the electromagnetic power is p=q2a26πεc3 .

The formula to calculate the electromagnetic power is,

p=q2a26πεc3 (1)

Here,

ε is the emissivity of the free space.

c is the speed of the light.

q is the charge of the particle.

The dimension of ε is [A2M1L3T4] , the dimension of q is [AT] , the dimension of c is [LT1] and the dimension of a is [LT2] .

Substitute the dimensions [A2M1L3T4] for ε , [AT] for q , [LT1] for c and [LT2] for a in the equation (1) to find the unit of p .

p=[AT]2×[LT2]2[A2M1L3T4]×[LT1]3=A2L2T2A2M1T1=ML2T3

The dimension [ML2T3] is of energy and the unit of energy is watts.

Conclusion:

Therefore, the unit of the equation on the right hand side is watts.

(b)

To determine

The acceleration of the electron.

(b)

Expert Solution
Check Mark

Answer to Problem 74P

The acceleration of the electron is 1.75×1013m/s2 .

Explanation of Solution

Given info: The equation of the electromagnetic power is p=q2a26πεc3 .

The formula to calculate the acceleration is,

a=qEm (2)

Here,

q is the charge of the electron.

E is the magnitude of electric field.

m is the mass of the electron.

Substitute 1.6×1019C for q , 100V/m for E and 9.1×1031kg for m in the above equation to find the value of a .

a=(1.6×1019C)(100V/m)(9.1×1031kg)=1.75×1013m/s2

Thus, the acceleration of the electron is 1.75×1013m/s2 .

Conclusion:

Therefore, the acceleration of the electron is 1.75×1013m/s2 .

(c)

To determine

The electromagnetic power radiated by the electron.

(c)

Expert Solution
Check Mark

Answer to Problem 74P

The electromagnetic power radiated by the electron is 1.73×1024W .

Explanation of Solution

Given info: The equation of the electromagnetic power is p=q2a26πεc3 .

The expression for the electromagnetic power is,

p=q2a26πεc3

Substitute 8.8×1012 for ε , 1.6×1019C for q , 3×108m/s for c and 1.75×1013m/s2 for a in the above equation to find the value of p .

p=(1.6×1019C)2(1.75×1013m/s2)26π(8.8×1012)(3×108m/s)3=1.73×1024W

Thus, the electromagnetic power radiated by the electron is 1.73×1024W .

Conclusion:

Therefore, the electromagnetic power radiated by the electron is 1.73×1024W .

(d)

To determine

The electromagnetic power of the proton leaving a cyclotron.

(d)

Expert Solution
Check Mark

Answer to Problem 74P

The electromagnetic power of the proton leaving a cyclotron is 2.08×1021W .

Explanation of Solution

Given info: The electric flux of the particle is 487Nm2/C . the power is radiated equally in all directions is 25.0W .

Given info: The equation of the electromagnetic power is p=q2a26πεc3 .

The formula to calculate the acceleration is,

a=q2B2rm2 (2)

Here,

q is the charge of the proton.

B is the magnetic field.

r is the radius leaving the cyclotron.

m is the mass of the proton.

Substitute 1.6×1019C for q , 1.6×1027kg for m , 0.500m for r and 0.350T for B in the equation (2) to find the value of a .

a=(1.6×1019C)2(0.350T)2(0.500m)(1.6×1027kg)2=6.1×1014m/s2

The expression for the electromagnetic power is,

p=q2a26πεc3

Substitute 8.8×1012 for ε , 1.6×1019C for q , 3×108m/s for c and 6.1×1014m/s2 for a in the above equation to find the value of p .

p=(1.6×1019C)2(6.1×1014m/s2)26π(8.8×1012)(3×108m/s)3=2.08×1021W

Conclusion:

Therefore, the electromagnetic power of the proton leaving a cyclotron is 2.08×1021W .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
When you stand outdoors in the sunlight, why can you feel the energy that the sunlight carries, but not the momentum it carries? Under what conditions might wires in a circuit where the current flows in only one direction emit electromagnetic waves?
An electromagnetic plane wave is propagating in the +x direction. At a certain point P and at a giveninstant, the electric field of the wave has a magnitude E = 82 V/m . The magnitude of the magneticfield of the wave at that point is 10 x 10^-7 5.4 x 10^-7 15 x 10^-7 1.7 x 10^-7 2.7 x 10^-7
The figure shows three situations - A, B, and C - in which an observer and a source of electromagnetic waves are moving along the same line. In each case the source emits a wave that has a frequency of 4.75 x 1014 Hz. The arrows in each situation denote velocity vectors of the observer and the source relative to the ground and have the magnitudes indicated (v or 2v), where the speed v is 1.80 x 106 m/s. What is the observed frequency in situation B?

Chapter 24 Solutions

Principles of Physics: A Calculus-Based Text

Ch. 24 - If plane polarized light is sent through two...Ch. 24 - Prob. 5OQCh. 24 - Prob. 6OQCh. 24 - Prob. 7OQCh. 24 - Prob. 9OQCh. 24 - Prob. 10OQCh. 24 - Prob. 11OQCh. 24 - Consider an electromagnetic wave traveling in the...Ch. 24 - Prob. 1CQCh. 24 - Prob. 2CQCh. 24 - Prob. 3CQCh. 24 - Prob. 4CQCh. 24 - Prob. 5CQCh. 24 - Prob. 6CQCh. 24 - Prob. 7CQCh. 24 - Prob. 8CQCh. 24 - Prob. 9CQCh. 24 - Prob. 10CQCh. 24 - Prob. 11CQCh. 24 - Prob. 12CQCh. 24 - Prob. 1PCh. 24 - Prob. 2PCh. 24 - Prob. 3PCh. 24 - A 1.05-H inductor is connected in series with a...Ch. 24 - Prob. 5PCh. 24 - Prob. 6PCh. 24 - Prob. 7PCh. 24 - An electron moves through a uniform electric field...Ch. 24 - Prob. 9PCh. 24 - Prob. 10PCh. 24 - Prob. 11PCh. 24 - Prob. 12PCh. 24 - Figure P24.13 shows a plane electromagnetic...Ch. 24 - Prob. 14PCh. 24 - Review. A microwave oven is powered by a...Ch. 24 - Prob. 16PCh. 24 - A physicist drives through a stop light. When he...Ch. 24 - Prob. 18PCh. 24 - Prob. 19PCh. 24 - A light source recedes from an observer with a...Ch. 24 - Prob. 21PCh. 24 - Prob. 22PCh. 24 - Prob. 23PCh. 24 - Prob. 24PCh. 24 - Prob. 25PCh. 24 - Prob. 26PCh. 24 - Prob. 27PCh. 24 - Prob. 28PCh. 24 - Prob. 29PCh. 24 - Prob. 30PCh. 24 - Prob. 31PCh. 24 - Prob. 32PCh. 24 - Prob. 33PCh. 24 - Prob. 34PCh. 24 - Prob. 35PCh. 24 - Prob. 36PCh. 24 - Prob. 37PCh. 24 - Prob. 38PCh. 24 - Prob. 39PCh. 24 - Prob. 40PCh. 24 - Prob. 41PCh. 24 - Prob. 42PCh. 24 - Prob. 43PCh. 24 - Prob. 44PCh. 24 - Prob. 45PCh. 24 - Prob. 46PCh. 24 - Prob. 47PCh. 24 - Prob. 48PCh. 24 - You use a sequence of ideal polarizing filters,...Ch. 24 - Prob. 50PCh. 24 - Prob. 51PCh. 24 - Figure P24.52 shows portions of the energy-level...Ch. 24 - Prob. 53PCh. 24 - Prob. 54PCh. 24 - Prob. 55PCh. 24 - Prob. 56PCh. 24 - Prob. 57PCh. 24 - Prob. 58PCh. 24 - Prob. 59PCh. 24 - Prob. 60PCh. 24 - Prob. 61PCh. 24 - Prob. 62PCh. 24 - A dish antenna having a diameter of 20.0 m...Ch. 24 - Prob. 65PCh. 24 - Prob. 66PCh. 24 - Prob. 67PCh. 24 - Prob. 68PCh. 24 - Prob. 69PCh. 24 - Prob. 70PCh. 24 - Prob. 71PCh. 24 - A microwave source produces pulses of 20.0-GHz...Ch. 24 - A linearly polarized microwave of wavelength 1.50...Ch. 24 - Prob. 74PCh. 24 - Prob. 75P
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
University Physics Volume 2
Physics
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill