Numerical Analysis
Numerical Analysis
10th Edition
ISBN: 9781305253667
Author: Richard L. Burden, J. Douglas Faires, Annette M. Burden
Publisher: Cengage Learning
bartleby

Videos

Textbook Question
Book Icon
Chapter 2.5, Problem 10ES

Use Steffensen’s method with p0 = 3 to compute an approximation to 25 3 accurate to within 10−4. Compare this result with the results obtained in Exercise 12 of Section 2.2 and Exercise 13 of Section 2.1.

12. Use a fixed-point iteration method to find an approximation to 25 3 that is accurate to within 10−4. Compare your result and the number of iterations required with the answer obtained in Exercise 13 of Section 2.1.

13. Find an approximation 25 3 correct to within 10−4 using the Bisection Algorithm. [Hint: Consider f(x) = x3 − 25.]

Blurred answer

Chapter 2 Solutions

Numerical Analysis

Ch. 2.1 - Let f(x) = (x + 2)(x + 1)x(x 1)3(x 2). To which...Ch. 2.1 - Find an approximation to 253 correct to within 104...Ch. 2.1 - Find an approximation to 3 correct to within 104...Ch. 2.1 - A trough of length L has a cross section in the...Ch. 2.1 - Use Theorem 2.1 to find a bound for the number of...Ch. 2.1 - Prob. 18ESCh. 2.1 - Prob. 19ESCh. 2.1 - Let f(x) = (x 1)10, p = 1, and pn = 1 + 1/n. Show...Ch. 2.1 - The function defined by f(x) = sin x has zeros at...Ch. 2.1 - Prob. 1DQCh. 2.1 - Prob. 2DQCh. 2.1 - Is the Bisection method sensitive to the starting...Ch. 2.2 - Use algebraic manipulation to show that each of...Ch. 2.2 - a. Perform four iterations, if possible, on each...Ch. 2.2 - Let f(x) = x3 2x + 1. To solve f(x) = 0, the...Ch. 2.2 - Let f(x) = x4 + 3x2 2. To solve f(x) = 0, the...Ch. 2.2 - The following four methods are proposed to compute...Ch. 2.2 - Prob. 6ESCh. 2.2 - Prob. 7ESCh. 2.2 - Prob. 8ESCh. 2.2 - Use Theorem 2.3 to show that g(x) = + 0.5...Ch. 2.2 - Use Theorem 2.3 to show that g(x) = 2x has a...Ch. 2.2 - Use a fixed-point iteration method to find an...Ch. 2.2 - Use a fixed-point iteration method to determine a...Ch. 2.2 - Use a fixed-point iteration method to determine a...Ch. 2.2 - Prob. 20ESCh. 2.2 - Prob. 21ESCh. 2.2 - a. Show that Theorem 2.3 is true if the inequality...Ch. 2.2 - a. Use Theorem 2.4 to show that the sequence...Ch. 2.2 - Prob. 24ESCh. 2.2 - Prob. 25ESCh. 2.2 - Suppose that g is continuously differentiable on...Ch. 2.3 - Let f(x) = x2 6 and p0 = 1. Use Newtons method to...Ch. 2.3 - Let f(x) = x3 cos x and p0 = 1. Use Newtons...Ch. 2.3 - Let f(x) = x2 6. With p0 = 3 and p1 = 2, find p3....Ch. 2.3 - Let f(x) = x3 cos x. With p0 = 1 and p1 = 0, find...Ch. 2.3 - Prob. 11ESCh. 2.3 - Prob. 12ESCh. 2.3 - The fourth-degree polynomial...Ch. 2.3 - Prob. 14ESCh. 2.3 - Prob. 15ESCh. 2.3 - Prob. 16ESCh. 2.3 - Prob. 22ESCh. 2.3 - Prob. 23ESCh. 2.3 - Prob. 24ESCh. 2.3 - Prob. 25ESCh. 2.3 - Prob. 27ESCh. 2.3 - A drug administered to a patient produces a...Ch. 2.3 - Prob. 30ESCh. 2.3 - Prob. 32ESCh. 2.3 - Prob. 1DQCh. 2.3 - Prob. 2DQCh. 2.3 - Prob. 3DQCh. 2.3 - Prob. 4DQCh. 2.4 - Prob. 6ESCh. 2.4 - a. Show that for any positive integer k, the...Ch. 2.4 - Prob. 8ESCh. 2.4 - a. Construct a sequence that converges to 0 of...Ch. 2.4 - Prob. 10ESCh. 2.4 - Prob. 11ESCh. 2.4 - Prob. 12ESCh. 2.4 - Prob. 13ESCh. 2.4 - Prob. 14ESCh. 2.4 - Prob. 1DQCh. 2.4 - Prob. 2DQCh. 2.4 - Prob. 4DQCh. 2.5 - Let g(x) = cos(x 1) and p0(0) = 2. Use...Ch. 2.5 - Prob. 4ESCh. 2.5 - Prob. 5ESCh. 2.5 - Prob. 6ESCh. 2.5 - Use Steffensens method to find, to an accuracy of...Ch. 2.5 - Prob. 8ESCh. 2.5 - Prob. 9ESCh. 2.5 - Use Steffensens method with p0 = 3 to compute an...Ch. 2.5 - Use Steffensens method to approximate the...Ch. 2.5 - Prob. 12ESCh. 2.5 - Prob. 13ESCh. 2.5 - Prob. 14ES

Additional Math Textbook Solutions

Find more solutions based on key concepts
Knowledge Booster
Background pattern image
Math
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
Graph Theory: Euler Paths and Euler Circuits; Author: Mathispower4u;https://www.youtube.com/watch?v=5M-m62qTR-s;License: Standard YouTube License, CC-BY
WALK,TRIAL,CIRCUIT,PATH,CYCLE IN GRAPH THEORY; Author: DIVVELA SRINIVASA RAO;https://www.youtube.com/watch?v=iYVltZtnAik;License: Standard YouTube License, CC-BY