Physics
Physics
5th Edition
ISBN: 9781260487008
Author: GIAMBATTISTA, Alan
Publisher: MCGRAW-HILL HIGHER EDUCATION
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 25, Problem 41P

(a)

To determine

The number of maxima seen on the screen.

(a)

Expert Solution
Check Mark

Answer to Problem 41P

The number of maxima seen on the screen is five.

Explanation of Solution

Find the equation to find the maximum possible value of m.

    dsinθ=mλm=dsinθλ                                                                                       (I)

Here, d is the slit width, θ is the angle of incidence, λ is the wavelength and m is the order that has the values 0,±1,±2....

Conclusion:

Substitute 0.600μm for λ, 1.50μm for d and 90° for θ to find the maximum value of m.

    m=(1.50μm)sin90°0.600μm=1.50μm(1)0.600μm=2.50

 As the order has the values 0,±1,±2..., the possible values are 2,1,0,1,2.

Thus, the number of maxima seen on the screen is five.

(a)

To determine

Sketch the pattern for the distance 3.0m from the grating.

(a)

Expert Solution
Check Mark

Answer to Problem 41P

The pattern is drawn in figure 2.

Explanation of Solution

Sketch the diagram showing the situation.

Physics, Chapter 25, Problem 41P , additional homework tip  1

The central maxima is seen at an angle θ0=0°.

Find the equation to find the distance of the first maxima from the central maxima.

    x1=Dtanθ1                                                                                                       (II)

Here, x1 is the distance of the first maxima from the central maxima, D is the distance between the slit and the screen and θ1 is the angle for first maxima.

Find the equation for the angle for first maxima.

    dsinθ1=λθ1=sin1λd                                                                                             (III)

Substitute equation (III) in equation (II) to find x1.

    x1=Dtan(sin1λd)                                                                                       (IV)

Find the equation to find the distance of the second maxima from the central maxima.

    x2=Dtanθ2                                                                                                    (V)

Here, x2 is the distance of the second maxima from the central maxima and θ2 is the angle for second maxima.

Find the equation for the angle for second maxima.

    dsinθ2=2λθ2=sin12λd                                                                                         (VI)

Substitute equation (VI) in equation (V) to find x2.

    x2=Dtan(sin12λd)                                                                                     (VII)

Conclusion:

Substitute 0.600μm for λ, 1.50μm for d and 3.0m for D in equation (IV) to find x1.

    x1=(3.0m)tan(sin10.600μm1.50μm)=(3.0m)tan23.58°=1.3m                                                               (VIII)

Substitute 0.600μm for λ, 1.50μm for d and 3.0m for D in equation (VII) to find x2.

    x2=(3.0m)tan(sin12(0.600μm)1.50μm)=(3.0m)tan53.13°=4.0m                                                             (IX)

Sketch the pattern using the results in equation (VIII) and (IX).

Physics, Chapter 25, Problem 41P , additional homework tip  2

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!

Chapter 25 Solutions

Physics

Ch. 25.7 - Prob. 25.8PPCh. 25.8 - Prob. 25.9PPCh. 25 - Prob. 1CQCh. 25 - Prob. 2CQCh. 25 - Prob. 3CQCh. 25 - Prob. 4CQCh. 25 - Prob. 5CQCh. 25 - Prob. 6CQCh. 25 - Prob. 7CQCh. 25 - Prob. 8CQCh. 25 - Prob. 9CQCh. 25 - Prob. 10CQCh. 25 - Prob. 11CQCh. 25 - 12. In Section 25.3 we studied interference due to...Ch. 25 - Prob. 13CQCh. 25 - Prob. 14CQCh. 25 - Prob. 15CQCh. 25 - Prob. 16CQCh. 25 - Prob. 17CQCh. 25 - Prob. 18CQCh. 25 - Prob. 19CQCh. 25 - Prob. 20CQCh. 25 - Prob. 21CQCh. 25 - Prob. 1MCQCh. 25 - Prob. 2MCQCh. 25 - Prob. 3MCQCh. 25 - Prob. 4MCQCh. 25 - Prob. 5MCQCh. 25 - Prob. 6MCQCh. 25 - 7. Coherent light of a single frequency passes...Ch. 25 - Prob. 8MCQCh. 25 - Prob. 9MCQCh. 25 - Prob. 10MCQCh. 25 - Prob. 1PCh. 25 - Prob. 2PCh. 25 - Prob. 3PCh. 25 - Prob. 4PCh. 25 - Prob. 5PCh. 25 - Prob. 6PCh. 25 - Prob. 7PCh. 25 - Prob. 8PCh. 25 - Prob. 9PCh. 25 - Prob. 10PCh. 25 - Prob. 11PCh. 25 - Prob. 12PCh. 25 - Prob. 13PCh. 25 - Prob. 14PCh. 25 - Prob. 15PCh. 25 - 16. A transparent film (n = 1.3) is deposited on a...Ch. 25 - 17. A camera lens (n = 1.50) is coated with a thin...Ch. 25 - 18. A soap film has an index of refraction n =...Ch. 25 - Prob. 19PCh. 25 - Prob. 20PCh. 25 - Prob. 21PCh. 25 - Prob. 22PCh. 25 - Prob. 23PCh. 25 - Prob. 24PCh. 25 - Prob. 25PCh. 25 - Prob. 26PCh. 25 - Prob. 27PCh. 25 - Prob. 36PCh. 25 - Prob. 28PCh. 25 - Prob. 32PCh. 25 - Prob. 29PCh. 25 - Prob. 30PCh. 25 - Prob. 31PCh. 25 - Prob. 34PCh. 25 - Prob. 33PCh. 25 - Prob. 35PCh. 25 - Prob. 37PCh. 25 - Prob. 38PCh. 25 - Prob. 39PCh. 25 - Prob. 40PCh. 25 - Prob. 41PCh. 25 - Prob. 42PCh. 25 - Prob. 43PCh. 25 - 44. ✦ White light containing wavelengths from 400...Ch. 25 - Prob. 45PCh. 25 - Prob. 46PCh. 25 - 47. The central bright fringe in a single-slit...Ch. 25 - Prob. 48PCh. 25 - Prob. 49PCh. 25 - Prob. 50PCh. 25 - Prob. 51PCh. 25 - Prob. 52PCh. 25 - Prob. 53PCh. 25 - Prob. 54PCh. 25 - Prob. 55PCh. 25 - Prob. 56PCh. 25 - Prob. 57PCh. 25 - Prob. 58PCh. 25 - Prob. 60PCh. 25 - Prob. 61PCh. 25 - Prob. 59PCh. 25 - Prob. 62PCh. 25 - 63. ✦ If you shine a laser with a small aperture...Ch. 25 - Prob. 64PCh. 25 - Prob. 65PCh. 25 - Prob. 66PCh. 25 - Prob. 67PCh. 25 - Prob. 68PCh. 25 - Prob. 69PCh. 25 - 70. Coherent green light with a wavelength of 520...Ch. 25 - Prob. 71PCh. 25 - Prob. 72PCh. 25 - Prob. 73PCh. 25 - Prob. 74PCh. 25 - Prob. 75PCh. 25 - Prob. 76PCh. 25 - Prob. 77PCh. 25 - Prob. 78PCh. 25 - Prob. 91PCh. 25 - Prob. 79PCh. 25 - Prob. 80PCh. 25 - Prob. 81PCh. 25 - Prob. 82PCh. 25 - Prob. 83PCh. 25 - Prob. 84PCh. 25 - Prob. 85PCh. 25 - Prob. 86PCh. 25 - Prob. 87PCh. 25 - Prob. 88PCh. 25 - Prob. 89PCh. 25 - Prob. 90PCh. 25 - Prob. 93PCh. 25 - Prob. 92PCh. 25 - Prob. 94PCh. 25 - Prob. 95PCh. 25 - Prob. 96PCh. 25 - Prob. 97P
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Text book image
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
Text book image
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Spectra Interference: Crash Course Physics #40; Author: CrashCourse;https://www.youtube.com/watch?v=-ob7foUzXaY;License: Standard YouTube License, CC-BY