Manufacturing Processes for Engineering Materials (6th Edition)
Manufacturing Processes for Engineering Materials (6th Edition)
6th Edition
ISBN: 9780134290553
Author: Serope Kalpakjian, Steven Schmid
Publisher: PEARSON
bartleby

Videos

Question
Book Icon
Chapter 3, Problem 3.54P

(a)

To determine

The minimum weight of a 1m long tension member of stainless steel.

(a)

Expert Solution
Check Mark

Answer to Problem 3.54P

The minimum weight of a 1m long tension member stainless steel is 0.1328kg .

Explanation of Solution

Given:

The length of the wire is l=1m .

The load supported by the member is P=4kN .

Formula used:

The expression for area of the specimen is given as,

  A=PSy

Here, Sy is the yield strength and P is the load applied.

The expression for mass of the specimen is given as,

  m=ρ×A×l

Here, m is the mass of the specimen, and ρ is the density of the specimen.

Calculation:

Refer to table 3.4 “Room temperature mechanical properties and typical applications of annealed stainless steels” value obtained from this table is,

  Sy=240MPa

The expression for area of the specimen can be calculated as,

  A=PSyA=4000N( 240000× 10 3 kPa)( 1000N/ m 2 1kPa )=1.66×105m2

The expression for mass of the specimen can be calculated as,

  m=ρ×A×lm=8000kg/m3×1.66×105m2×1m=0.1328kg

Conclusions:

Therefore, the minimum weight of a 1m long tension member stainless steel is 0.1328kg .

(b)

To determine

The minimum weight of a 1m long tension member of normalized 8620 steel.

(b)

Expert Solution
Check Mark

Answer to Problem 3.54P

The minimum weight of a 1m long tension member of normalized 8620 steel is 0.0848kg .

Explanation of Solution

Given:

The length of the wire is l=1m .

The load supported by the member is P=4kN .

Formula used:

The expression for area of the specimen is given as,

  A=PSy

Here, Sy is the yield strength and P is the load applied.

The expression for mass of the specimen is given as,

  m=ρ×A×l

Here, m is the mass of the specimen, and ρ is the density of the specimen.

Calculation:

Refer to strength and density data book the value obtained as

  Sy=360MPa

The expression for area of the specimen can be calculated as,

  A=PSyA=4000N( 360000× 10 3 kPa)( 1000N/ m 2 1kPa )=1.111×105m2

The expression for mass of the specimen can be calculated as

  m=ρ×A×lm=7850kg/m3×1.081×105m2×1m=0.0848kg

Conclusions:

Therefore, the minimum weight of a 1m long tension member normalized 8620 steel is 0.0848kg .

(c)

To determine

The minimum weight of a 1m long tension member of rolled 1080 steel.

(c)

Expert Solution
Check Mark

Answer to Problem 3.54P

The minimum weight of a 1m long tension member of rolled 1080 steel is 0.0526kg .

Explanation of Solution

Given:

The length of the wire is l=1m .

The load supported by the member is P=4kN .

Formula used:

The expression for area of the specimen is given as,

  A=PSy

Here, Sy is the yield strength and P is the load applied.

The expression for mass of the specimen is given as,

  m=ρ×A×l

Here, m is the mass of the specimen, and ρ is the density of the specimen.

Calculation:

Refer to strength and density data book the value obtained as

  Sy=585MPa

The expression for the area of the specimen can be calculated as,

  A=PSyA=4000N( 585000× 10 3 kPa)( 1000N/ m 2 1kPa )=0.6837×105m2

The expression for mass of the specimen can be calculated as

  m=ρ×A×lm=7700kg/m3×0.6837×105m2×1m=0.0526kg

Conclusions:

Therefore, the minimum weight of a 1m long tension member rolled 1080 steel is 0.0526kg .

(d)

To determine

The minimum weight of a 1m long tension member of 5052-O aluminum alloy.

(d)

Expert Solution
Check Mark

Answer to Problem 3.54P

The minimum weight of a 1m long tension member of 5052-O aluminum alloy is 0.0833kg .

Explanation of Solution

Given:

The length of the wire is l=1m .

The load supported by the member is P=4kN .

Formula used:

The expression for area of the specimen is given as,

  A=PSy

Here, Sy is the yield strength and P is the load applied.

The expression for mass of the specimen is given as,

  m=ρ×A×l

Here, m is the mass of the specimen, and ρ is the density of the specimen.

Calculation:

Refer to table 3.5 “Properties of various aluminum alloy” value obtained from this table is,

  Sy=215MPa

The expression for the area of the specimen can be calculated as,

  A=PSyA=4000N( 215000× 10 3 kPa)( 1000N/ m 2 1kPa )=1.860×105m2

The expression for mass of the specimen can be calculated as,

  m=ρ×A×lm=2710kg/m3×3.0769×105m2×1m=0.0833kg

Conclusions:

Therefore, the minimum weight of a 1m long tension member 5052-O aluminum alloy is 0.0833kg .

(e)

To determine

The minimum weight of a 1m long tension member of AZ31B-F magnesium.

(e)

Expert Solution
Check Mark

Answer to Problem 3.54P

The minimum weight of a 1m long tension member of AZ31B-F magnesium is 0.7555kg .

Explanation of Solution

Given:

The length of the wire is l=1m .

The load supported by the member is P=4kN .

Formula used:

The expression for area of the specimen is given as,

  A=PSy

Here, Sy is the yield strength and P is the load applied.

The expression for mass of the specimen is given as,

  m=ρ×A×l

Here, m is the mass of the specimen, and ρ is the density of the specimen.

Calculation:

Refer to table 3.5 “Properties of various aluminum alloy” value obtained from this table is,

  Sy=215MPa

The expression for the area of the specimen can be calculated as,

  A=PSyA=4000N( 290000× 10 3 kPa)( 1000N/ m 2 1kPa )=1.379×105m2

The expression for mass of the specimen can be calculated as,

  m=ρ×A×lm=8500kg/m3×8.888×105m2×1m=0.7555kg

Conclusions:

Therefore, the minimum weight of a 1m long tension member AZ31B-F magnesium is 0.7555kg .

(f)

To determine

The minimum weight of a 1m long tension member of pure copper.

(f)

Expert Solution
Check Mark

Answer to Problem 3.54P

The minimum weight of a 1m long tension member of pure copper is 0.5194kg

Explanation of Solution

Given:

The length of the wire is l=1m .

The load supported by the member is P=4kN .

Formula used:

The expression for the area of the specimen is given as,

  A=PSy

Here, Sy is the yield strength and P is the load applied.

The expression for mass of the specimen is given as,

  m=ρ×A×l

Here, m is the mass of the specimen, and ρ is the density of the specimen.

Calculation:

The expression for the area of the specimen can be calculated as,

  A=PSyA=4000N( 70000× 10 3 kPa)( 1000N/ m 2 1kPa )=5.7142×105m2

The expression for mass of the specimen can be calculated as,

  m=ρ×A×lm=8960kg/m3×5.797×105m2×1m=0.5194kg

Conclusions:

Therefore, the minimum weight of a 1m long tension member pure copper is 0.5194kg .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A cylindrical specimen of a cold-worked brass has a ductility (%EL) of 21%. If its cold-worked radius is 14 mm, what was its radius before deformation?
Using various tables, determine the specific strength (yield strength-to-density ratio) in unit of kN⋅m/kg for AISI 1015 hot-rolled steel, 7075-T6 aluminum alloy, Ti-0.2 Pd titanium alloy, and ASTM No. 60 gray cast iron.
Draw the engineering stress-strain curve for low carbon steel and indicate the important points on the curve.
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Welding: Principles and Applications (MindTap Cou...
Mechanical Engineering
ISBN:9781305494695
Author:Larry Jeffus
Publisher:Cengage Learning
Introduction to Ferrous and Non-Ferrous Metals.; Author: Vincent Ryan;https://www.youtube.com/watch?v=zwnblxXyERE;License: Standard Youtube License