Physics for Scientists and Engineers with Modern Physics  Technology Update
Physics for Scientists and Engineers with Modern Physics Technology Update
9th Edition
ISBN: 9781305804487
Author: SERWAY
Publisher: Cengage
bartleby

Videos

Question
Book Icon
Chapter 31, Problem 71AP

(a)

To determine

The maximum induced emf in the coil.

(a)

Expert Solution
Check Mark

Answer to Problem 71AP

The maximum induced emf in the coil is 36.0V.

Explanation of Solution

Let θ be the angle between the normal to the coil and the magnetic field.

At t=0, θ=0 and θ=ωt at later times.

Write the expression for the emf induced in the coil.

    ε=Nddt(ABcosθ)

Here, N is the number of the loops, A is the area of the loop, B is the magnetic field and θ is angle between normal to the area vector and magnetic field.

Substitute θ=ωt in the above expression to find ε.

    ε=Nddt(ABcosωt)=NABωsinωt                                                                                            (I)

Write the expression for the area of the loop.

    A=l.b                                                                                                                   (II)

Here, l is the length of the loop and b is the breadth of the loop.

The maximum value of sinθ is 1

Conclusion:

Substitute lb for A in equation (I) to find ε.

    ε=NlbBωsinωt                                                                                              (III)

Substitute 60 for N, 0.100m for l , 0.200m for b, 1.00T for B, 30.0rad/s for ω and 1 for sinωt in equation (III) to find ε.

    ε=60(0.100m)(0.200m)(1.00T)(30.0rad/s)=36.0V

Therefore, the maximum induced emf in the coil is 36.0V.

(b)

To determine

The maximum rate of change of magnetic flux through coil.

(b)

Expert Solution
Check Mark

Answer to Problem 71AP

The maximum rate of change of magnetic flux through coil is 0.60Wb/s

Explanation of Solution

Write the expression for the rate of change of magnetic flux.

    dϕBdt=d(BAcosθ)dt=Blbωsinωt                                                                                            (IV)

The minimum value of sinθ is 1.

Conclusion:

Substitute , 0.100m for l , 0.200m for b, 1.00T for B, 30.0rad/s for ω and 1 for sinωt in equation (IV) to find dϕBdt.

    dϕBdt=(0.100m)(0.200m)(1.00T)(30.0rad/s)(1)=0.60Tm2/s(1Wb1Tm2)=0.60Wb/s

Therefore, the maximum rate of change of magnetic flux through coil is 0.60Wb/s

(c)

To determine

The emf induced at t=0.05s.

(c)

Expert Solution
Check Mark

Answer to Problem 71AP

The emf induced at t=0.05s is 35.9V

Explanation of Solution

At t=0.05s,

    θ=(30.0rad/s)(0.05s)=1.5rad=1.5×57.2958=85.9°

Conclusion:

Substitute 60 for N, 0.100m for l , 0.200m for b, 1.00T for B, 30.0rad/s for ω and 85.9° for ωt in equation (III) to find ε.

    ε=60(0.100m)(0.200m)(1.00T)(30.0rad/s)sin(85.9°)=35.9V

Therefore, the emf induced at t=0.05s is 35.9V

(d)

To determine

The torque exerted on the coil by the magnetic field when the emf is maximum.

(d)

Expert Solution
Check Mark

Answer to Problem 71AP

The torque exerted on the coil by the magnetic field when the emf is maximum is 4.32Nm.

Explanation of Solution

The emf induced is maximum when θ=90°.

Write the expression for the torque.

    τ=BINAsinθ=ΝεmaxlbBR                                                                                                    (V)

Here, R is the resistance of the coil.

Conclusion:

Substitute 60 for N, 36.0V for εmax, 0.100m for l, 0.200m for b, 1.00T for B and 10.0Ω for R in the equation (V) to find τ.

    τ=60(36.0V)(0.100m)(0.200m)(1.00T)10.0Ω=4.32Nm

Therefore, the torque exerted on the coil by the magnetic field when the emf is maximum is 4.32Nm.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A rectangular loop (area =0.15 m2) turns in a uniform magnetic field,B = 0.20 T.When the angle between the field and the normal to the plane of the loop is p/2 rad and increasing at 0.60 rad/s, what emf is induced in the loop?
A circular coil of radius 12.5 cm is located in a region of magnetic field where  B(t) = (+0.3 T/s)t and with the magnetic field oriented perpendicular to the plane of the loop. Find the magnutide of the induced EMF in this loop at  t = 10.0 s.
A 52-turn coil with an area of (5.5*10^-3)(m^2) is dropped from a position where B = 0.00 T to a new position where B = 0.55 T. If the displacement occurs in 0.25 s and the area of the coil is perpendicular to the magnetic field lines, what is the resulting average emf induced in the coil?

Chapter 31 Solutions

Physics for Scientists and Engineers with Modern Physics Technology Update

Ch. 31 - Prob. 6OQCh. 31 - Prob. 7OQCh. 31 - Prob. 8OQCh. 31 - Prob. 9OQCh. 31 - Prob. 10OQCh. 31 - Prob. 11OQCh. 31 - Prob. 1CQCh. 31 - Prob. 2CQCh. 31 - Prob. 3CQCh. 31 - Prob. 4CQCh. 31 - Prob. 5CQCh. 31 - Prob. 6CQCh. 31 - Prob. 7CQCh. 31 - Prob. 8CQCh. 31 - Prob. 9CQCh. 31 - Prob. 10CQCh. 31 - Prob. 1PCh. 31 - Prob. 2PCh. 31 - Prob. 3PCh. 31 - Prob. 4PCh. 31 - Prob. 5PCh. 31 - Prob. 6PCh. 31 - Prob. 7PCh. 31 - Prob. 8PCh. 31 - Prob. 9PCh. 31 - Scientific work is currently under way to...Ch. 31 - Prob. 11PCh. 31 - Prob. 12PCh. 31 - Prob. 13PCh. 31 - Prob. 14PCh. 31 - Prob. 15PCh. 31 - Prob. 16PCh. 31 - A coil formed by wrapping 50 turns of wire in the...Ch. 31 - Prob. 18PCh. 31 - Prob. 19PCh. 31 - Prob. 20PCh. 31 - Prob. 21PCh. 31 - Prob. 22PCh. 31 - Prob. 23PCh. 31 - A small airplane with a wingspan of 14.0 m is...Ch. 31 - A 2.00-m length of wire is held in an eastwest...Ch. 31 - Prob. 26PCh. 31 - Prob. 27PCh. 31 - Prob. 28PCh. 31 - Prob. 29PCh. 31 - Prob. 30PCh. 31 - Prob. 31PCh. 31 - Prob. 32PCh. 31 - Prob. 33PCh. 31 - Prob. 34PCh. 31 - Prob. 35PCh. 31 - Prob. 36PCh. 31 - Prob. 37PCh. 31 - Prob. 38PCh. 31 - Prob. 39PCh. 31 - Prob. 40PCh. 31 - Prob. 41PCh. 31 - Prob. 42PCh. 31 - Prob. 43PCh. 31 - Prob. 44PCh. 31 - Prob. 45PCh. 31 - Prob. 46PCh. 31 - Prob. 47PCh. 31 - Prob. 48PCh. 31 - The rotating loop in an AC generator is a square...Ch. 31 - Prob. 50PCh. 31 - Prob. 51APCh. 31 - Prob. 52APCh. 31 - Prob. 53APCh. 31 - Prob. 54APCh. 31 - Prob. 55APCh. 31 - Prob. 56APCh. 31 - Prob. 57APCh. 31 - Prob. 58APCh. 31 - Prob. 59APCh. 31 - Prob. 60APCh. 31 - Prob. 61APCh. 31 - Prob. 62APCh. 31 - Prob. 63APCh. 31 - Prob. 64APCh. 31 - Prob. 65APCh. 31 - Prob. 66APCh. 31 - Prob. 67APCh. 31 - A conducting rod moves with a constant velocity in...Ch. 31 - Prob. 69APCh. 31 - Prob. 70APCh. 31 - Prob. 71APCh. 31 - Prob. 72APCh. 31 - Prob. 73APCh. 31 - Prob. 74APCh. 31 - Prob. 75APCh. 31 - Prob. 76APCh. 31 - Prob. 77APCh. 31 - Prob. 78APCh. 31 - Prob. 79CPCh. 31 - Prob. 80CPCh. 31 - Prob. 81CPCh. 31 - Prob. 82CPCh. 31 - Prob. 83CP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
University Physics Volume 2
Physics
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
What is Electromagnetic Induction? | Faraday's Laws and Lenz Law | iKen | iKen Edu | iKen App; Author: Iken Edu;https://www.youtube.com/watch?v=3HyORmBip-w;License: Standard YouTube License, CC-BY