EBK NUMERICAL METHODS FOR ENGINEERS
EBK NUMERICAL METHODS FOR ENGINEERS
7th Edition
ISBN: 9780100254145
Author: Chapra
Publisher: YUZU
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 32, Problem 16P

Solve the nondimensional transient heat conduction equation in two dimensions, which represents the transient temperature distribution in an insulated plate. The governing equation is

2 u x 2 + 2 u y 2 = u t

where u = temperature, x and y are spatial coordinates, and t = time. The boundary and initial conditions are

Boundary conditions u | x , 0 , t | = 0
u | 0 , y , t | = 0
u | x , 0 , t | = 1
u | 1 , y , t | = 1
Initial conditions u | x , y , 0 | = 0 0 x < 1 0 y < 1

Solve using the alternating direction-implicit technique. Write a computer program to implement the solution. Plot the results using a three-dimensional plotting routine where the horizontal plan contains the x and y axes and the z axis is the dependent variable u. Construct several plots at various times, including the following: (a) the initial conditions; (b ) one intermediate time, approximately halfway to steady state; and (c ) the steady-state condition.

Blurred answer
Students have asked these similar questions
Derive the general heat conduction equation in Cartesian coordinates. b) Electric heater wires are installed in a solid wall having a thickness of 8 cm and k =2.5W/m ◦C.The right face is exposed to an environment with h=50W/m2◦C and T∞ = 30°C, while the left face is exposed to h=75W/m2◦C and T∞ =50◦C. What is the maximum allowable heat-generation rate such that the maximum temperature in the solid does not exceed 300◦C?
Find the two-dimensional temperature distribution T(x,y) and midplane temperature T(B/2,W/2) under steady state condition. The density, conductivity and specific heat of the material are p=(1200*32)kg/mº, k=400 W/m.K, and cp=2500 J/kg.K, respectively. A uniform heat flux 9" =1000 W/m² is applied to the upper surface. The right and left surfaces are also kept at 0°C. Bottom surface is insulated. 9" (W/m) T=0°C T=0°C W=(10*32)cm B=(30*32)cm
3.10 By neglecting lateral temperature variation in the analysis of fins, h,T. 木 H two-dimensional conduction is modeled as a one-dimensional H problem. То examine this T, h,T. approximation, consider a semi- infinite plate of thickness 2H. The base is maintained at uniform temperature T,. The plate exchanges heat by convection at its semi- infinite surfaces. The heat transfer coefficient is h and the ambient temperature is T.. Determine the heat transfer rate at the base.
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
01 - What Is A Differential Equation in Calculus? Learn to Solve Ordinary Differential Equations.; Author: Math and Science;https://www.youtube.com/watch?v=K80YEHQpx9g;License: Standard YouTube License, CC-BY
Higher Order Differential Equation with constant coefficient (GATE) (Part 1) l GATE 2018; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=ODxP7BbqAjA;License: Standard YouTube License, CC-BY
Solution of Differential Equations and Initial Value Problems; Author: Jefril Amboy;https://www.youtube.com/watch?v=Q68sk7XS-dc;License: Standard YouTube License, CC-BY