Physics for Scientists and Engineers with Modern Physics  Technology Update
Physics for Scientists and Engineers with Modern Physics Technology Update
9th Edition
ISBN: 9781305804487
Author: SERWAY
Publisher: Cengage
bartleby

Videos

Question
Book Icon
Chapter 32, Problem 70AP

(a)

To determine

The relation among the currents using Kirchhoff’s law.

(a)

Expert Solution
Check Mark

Answer to Problem 70AP

The relation among the currents using Kirchhoff’s law is I1=I2+I.

Explanation of Solution

Apply Kirchhoff’s junction rule which states that at any junction the sum of the cuurent must be equal to zero.

    I1=I2+I                                                                                                                    (I)

Here, I is the equivalent current in the circuit, I1 is the current through resistor R1 and I2 is the current through resistor R2.

Therefore, the relation among the currents using Kirchhoff’s law is I1=I2+I.

(b)

To determine

The relation using Kirchhoff’s rule in the left loop.

(b)

Expert Solution
Check Mark

Answer to Problem 70AP

The relation using Kirchhoff’s rule in the left loop is I1=ε+IR2R1+R2.

Explanation of Solution

Apply Kirchhoff’s loop rule in the left loop.

    ε=I1R1+I2R2                                                                                                          (II)

Here, ε is the emf across the left loop.

Rearrange equation (I) to get the expression for I2.

    I2=I1I

Substitute I1I for I2 in equation (II).

    ε=I1R1+(I1I)R2I1=ε+IR2R1+R2

Therefore, the relation using Kirchhoff’s rule in the left loop is I1=ε+IR2R1+R2.

(c)

To determine

The relation using Kirchhoff’s rule in the outer loop.

(c)

Expert Solution
Check Mark

Answer to Problem 70AP

The relation using Kirchhoff’s rule in the outer loop is ε=(ε+IR2R1+R2)R1+LdIdt.

Explanation of Solution

Apply Kirchhoff’s rule in the outer loop.

    ε=I1R1+LdIdt                                                                                                        (III)

Substitute ε+IR2R1+R2 for I1 in equation (III).

    ε=(ε+IR2R1+R2)R1+LdIdt                                                                                          (IV)

Therefore, the relation using Kirchhoff’s rule in the outer loop is ε=(ε+IR2R1+R2)R1+LdIdt.

(d)

To determine

The equation involving only current.

(d)

Expert Solution
Check Mark

Answer to Problem 70AP

The equation involving only current is εR2(R1+R2)IR1R2(R1+R2)LdIdt=0.

Explanation of Solution

Multiply and divide left hand side of equation (IV).

    ε(R1+R2)(R1+R2)=(ε+IR2(R1+R2))R1+LdIdtεR1(R1+R2)+εR2(R1+R2)=εR1(R1+R2)+IR1R2(R1+R2)+LdIdtεR2(R1+R2)IR1R2(R1+R2)LdIdt=0                                    (V)

Therefore, the equation involving only current is εR2(R1+R2)IR1R2(R1+R2)LdIdt=0.

(e)

To determine

The given expression.

(e)

Expert Solution
Check Mark

Answer to Problem 70AP

The given equation I=εR1((1e(R(L))(t))) has been derived.

Explanation of Solution

Equation (V) is of the form.

    εIRLdldt=0                                                                                                        (VI)

The solution to equation (V) is

    I=εR(1eRt/L)                                                                                                  (VII)

Compare equation (V), (VI) and (VII) for the value of I.

    I=εR2(R1+R2)R1R2(R1+R2)(1e(R1R2(R1+R2))(tL))=εR1((1e(R1R2(R1+R2))(tL)))                                                                             (VIII)

Substitute R for R1R2R1+R2 in equation (VIII)

    I=εR1((1e(R(L))(t)))

Therefore, the given equation I=εR1((1e(R(L))(t))) has been derived.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A  15.00 µF capacitor, labeled as C below,  is  charged to 175.0 µC at time t = 0. At t = 0, the capacitor is connected across the ends of a 5.00 mH inductor represented by symbol L. The diagram below shows the system just after the fully charged capacitor C is connected to inductor L. The current I just begins to flow at t = 0, reducing the charge Q on the right plate. (a) What is the angular frequency ω of the charge oscillations in the capacitor after the above connection is made?   (b) Find the maximum current IMAX.  (c) What is the value of charge Q on the right plate when the current I reaches the maximum value  IMAX?
At the instant when the current in an inductor is increasing with a rate of 640 x 10-4 A/s, the modulus of the self-induced electromotive force is equal to 160 x 10-4 V.  a) what is the inductance of the inductor?b) if the inductor is a solenoid with 400 turns, what is the average magnetic flux through each turn when the current is equal to 720 x 10-3 A?
An LR circuit is hooked up to a battery as shown in the figure, with the switch initially open. The resistance in the circuit is R=140 Ω, the inductance is L=2.20 H, and the battery maintains a voltage of E=48.0 V. At time t=0 the switch is closed. a) What is the current through the circuit after the switch has been closed for t=6.91E-3 s?1.22×10-1 A b) What is the voltage across the inductor after the switch has been closed for t= 6.91E-3 seconds?3.09×101 V How much energy is stored in the inductor at t= 6.91E-3 seconds. What is the power dissipation in the resistor at t=6.91E-3 seconds?2.09 W c) How much energy is stored in the inductor at t= 6.91E-3 seconds 1.64×10-2 J d) How much work has the battery done from the time the switch was closed until t=6.91E-3 s? e) How much energy has been dissipated in the resistor from the time the switch was closed until t= 6.91E-3 seconds? (The answers in bold are answers for the previous questions. I need help with d and e)

Chapter 32 Solutions

Physics for Scientists and Engineers with Modern Physics Technology Update

Ch. 32 - Prob. 6OQCh. 32 - Prob. 7OQCh. 32 - Prob. 1CQCh. 32 - Prob. 2CQCh. 32 - Prob. 3CQCh. 32 - Prob. 4CQCh. 32 - Prob. 5CQCh. 32 - Prob. 6CQCh. 32 - The open switch in Figure CQ32.7 is thrown closed...Ch. 32 - Prob. 8CQCh. 32 - Prob. 9CQCh. 32 - Prob. 10CQCh. 32 - Prob. 1PCh. 32 - Prob. 2PCh. 32 - Prob. 3PCh. 32 - Prob. 4PCh. 32 - Prob. 5PCh. 32 - Prob. 6PCh. 32 - Prob. 7PCh. 32 - Prob. 8PCh. 32 - Prob. 9PCh. 32 - Prob. 10PCh. 32 - Prob. 11PCh. 32 - Prob. 12PCh. 32 - Prob. 13PCh. 32 - Prob. 14PCh. 32 - Prob. 15PCh. 32 - Prob. 16PCh. 32 - Prob. 17PCh. 32 - Prob. 18PCh. 32 - Prob. 19PCh. 32 - Prob. 20PCh. 32 - Prob. 21PCh. 32 - Prob. 22PCh. 32 - Prob. 23PCh. 32 - Prob. 24PCh. 32 - Prob. 25PCh. 32 - Prob. 26PCh. 32 - Prob. 27PCh. 32 - Prob. 28PCh. 32 - Prob. 29PCh. 32 - Prob. 30PCh. 32 - Prob. 31PCh. 32 - Prob. 32PCh. 32 - Prob. 33PCh. 32 - Prob. 34PCh. 32 - Prob. 35PCh. 32 - Prob. 36PCh. 32 - Prob. 37PCh. 32 - Prob. 38PCh. 32 - Prob. 39PCh. 32 - Prob. 40PCh. 32 - Prob. 41PCh. 32 - Prob. 42PCh. 32 - Prob. 43PCh. 32 - Prob. 44PCh. 32 - Prob. 45PCh. 32 - Prob. 46PCh. 32 - Prob. 47PCh. 32 - Prob. 48PCh. 32 - Prob. 49PCh. 32 - Prob. 50PCh. 32 - Prob. 51PCh. 32 - Prob. 52PCh. 32 - Prob. 53PCh. 32 - Prob. 54PCh. 32 - Prob. 55PCh. 32 - Prob. 56PCh. 32 - Prob. 57PCh. 32 - Prob. 58PCh. 32 - Electrical oscillations are initiated in a series...Ch. 32 - Prob. 60APCh. 32 - Prob. 61APCh. 32 - Prob. 62APCh. 32 - A capacitor in a series LC circuit has an initial...Ch. 32 - Prob. 64APCh. 32 - Prob. 65APCh. 32 - At the moment t = 0, a 24.0-V battery is connected...Ch. 32 - Prob. 67APCh. 32 - Prob. 68APCh. 32 - Prob. 69APCh. 32 - Prob. 70APCh. 32 - Prob. 71APCh. 32 - Prob. 72APCh. 32 - Prob. 73APCh. 32 - Prob. 74APCh. 32 - Prob. 75APCh. 32 - Prob. 76APCh. 32 - Prob. 77APCh. 32 - Prob. 78CPCh. 32 - Prob. 79CPCh. 32 - Prob. 80CPCh. 32 - Prob. 81CPCh. 32 - Prob. 82CPCh. 32 - Prob. 83CP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
What is Electromagnetic Induction? | Faraday's Laws and Lenz Law | iKen | iKen Edu | iKen App; Author: Iken Edu;https://www.youtube.com/watch?v=3HyORmBip-w;License: Standard YouTube License, CC-BY