Physics for Scientists and Engineers
Physics for Scientists and Engineers
10th Edition
ISBN: 9781337553278
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
Question
Book Icon
Chapter 33, Problem 20P

(a)

To determine

The rms electric field due to solar radiation.

(b)

To determine

The average energy density of the solar component of electromagnetic radiation.

(c)

To determine

The average magnitude of the Poynting vector for the sun’s radiation.

Blurred answer
Students have asked these similar questions
At one location on the Earth, the rms value of the magnetic field caused by solar radiation is 1.90 µT. (a) Calculate the rms electric field due to solar radiation. V/m(b) Calculate the average energy density of the solar component of electromagnetic radiation at this location. µJ/m3(c) Calculate the average magnitude of the Poynting vector for the Sun's radiation. W/m2(d) Assuming that the average magnitude of the Poynting vector for solar radiation at the surface of the Earth is Sav = 1000 W/m2, compare your result in part (c) with this value. %
At the top of Earth’s atmosphere, the time-averaged Poynting vector associated with sunlight has a magnitude of about 1.49 kW/m2. a. What is the maximum value for the electric field of a wave of this intensity? Give your answer in volts per meter.  b. What is the maximum value for the magnetic field of a wave of this intensity? Give your answer in teslas.  c. What is the total power radiated by the sun? Assume that the Earth is 1.5×10111.5×1011 m from the Sun and that sunlight is composed of electromagnetic plane waves. Give your answer in watts.
The magnetic component of an electromagnetic wave in vacuum has an amplitude of 85.8 nT and an angular wave number of 4.00 m1.What are (a) the frequency of the wave, (b) the rms value of the electric component, and (c) the intensity of the light?

Chapter 33 Solutions

Physics for Scientists and Engineers

Ch. 33 - A diathermy machine, used in physiotherapy,...Ch. 33 - The distance to the North Star, Polaris, is...Ch. 33 - A radar pulse returns to the transmitterreceiver...Ch. 33 - The speed of an electromagnetic wave traveling in...Ch. 33 - You are working for SETI, the Search for...Ch. 33 - Review. A microwave oven is powered by a...Ch. 33 - Verify by substitution that the following...Ch. 33 - Why is the following situation impossible? An...Ch. 33 - At what distance from the Sun is the intensity of...Ch. 33 - If the intensity of sunlight at the Earths surface...Ch. 33 - Prob. 14PCh. 33 - High-power lasers in factories are used to cut...Ch. 33 - Review. Model the electromagnetic wave in a...Ch. 33 - Prob. 17PCh. 33 - Prob. 18PCh. 33 - Prob. 19PCh. 33 - Prob. 20PCh. 33 - A 25.0-mW laser beam of diameter 2.00 mm is...Ch. 33 - The intensity of sunlight at the Earths distance...Ch. 33 - Prob. 23PCh. 33 - Prob. 24PCh. 33 - Prob. 25PCh. 33 - Assume the intensity of solar radiation incident...Ch. 33 - Extremely low-frequency (ELF) waves that can...Ch. 33 - A large, flat sheet carries a uniformly...Ch. 33 - Prob. 29PCh. 33 - Prob. 30PCh. 33 - Prob. 31PCh. 33 - An important news announcement is transmitted by...Ch. 33 - Assume the intensity of solar radiation incident...Ch. 33 - Classify waves with frequencies of 2 Hz, 2 kHz, 2...Ch. 33 - The eye is most sensitive to light having a...Ch. 33 - Prob. 36APCh. 33 - You are working as a radio technician. One day,...Ch. 33 - One goal of the Russian space program is to...Ch. 33 - The intensity of solar radiation at the top of the...Ch. 33 - The Earth reflects approximately 38.0% of the...Ch. 33 - Consider a small, spherical particle of radius r...Ch. 33 - Consider a small, spherical particle of radius r...Ch. 33 - Review. A 1.00-m-diameter circular mirror focuses...Ch. 33 - Prob. 44APCh. 33 - Prob. 45APCh. 33 - You may wish to review Sections 16.4 and 16.8 on...Ch. 33 - You are working at NASA, in a division that is...Ch. 33 - Prob. 48APCh. 33 - Prob. 49APCh. 33 - Prob. 50CPCh. 33 - Prob. 51CP
Knowledge Booster
Background pattern image
Similar questions
Recommended textbooks for you
Text book image
University Physics Volume 2
Physics
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning