University Physics with Modern Physics (14th Edition)
University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780321973610
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 35, Problem 35.39P

Two flat plates of glass with parallel faces are on a table, one plate on the other. Each plate is 11.0 cm long and has a refractive index of 1.55. A very thin sheet of metal foil is inserted under the end of the upper plate to raise it slightly at that end, in a manner similar to that discussed in Example 35.4. When you view the glass plates from above with reflected white light, you observe that, at 1.15 mm from the line where the sheets are in contact, the violet light of wavelength 400.0 nm is enhanced in this reflected light, but no visible light is enhanced closer to the line of contact. (a) How far from the line of contact will green light (of wavelength 550.0 nm) and orange light (of wavelength 600.0 nm) first be enhanced? (b) How far from the line of contact will the violet, green, and orange light again be enhanced in the reflected light? (c) How thick is the metal foil holding the ends of the plates apart?

Blurred answer
06:47
Students have asked these similar questions
A plano-concave lens having index of refraction 1.50 is placed on a flat glass plate as shown in Figure P36.39. Its curved surface, with radius of curvature 8.00 m, is on the bottom. The lens is illuminated from above with yellow sodium light of wavelength 589 nm, and a series of concentric bright and dark rings is observed by reflection. The interference pattern has a dark spot at the center that is surrounded by 50 dark rings, the largest of which is at the outer edge of the lens. (a) What is the thickness of the air layer at the center of the interference pattern? (b) Calculate the radius of the outermost dark ring. (c) Find the focal lengthof the lens.
A plano-convex lens rests with its curved side on a flat glass surface and is illuminated from above by light of wavelength 464 nm. A dark spot is observed at the center, surrounded by 19 concentric dark rings (with bright rings in between). How much thicker is the air wedge at the position of the 19th dark ring than at the center? 2.41 um   2.97 um 3.77 um 4.41 um
You are standing in air and are looking at a flat piece of glass (n = 1.52) on which there is a layer of transparent plastic (n = 1.61). Light whose wavelength is 562 nm in vacuum is incident nearly perpendicularly on the coated glass and reflects into your eyes. The layer of plastic looks dark. Find the smallest possible nonzero value for the thickness of the layer.

Chapter 35 Solutions

University Physics with Modern Physics (14th Edition)

Ch. 35 - The two sources S1 and S2 shown in Fig. 35.3 emit...Ch. 35 - Could the Young two-slit interference experiment...Ch. 35 - Coherent red light illuminates two narrow slits...Ch. 35 - Coherent light with wavelength falls on two...Ch. 35 - Prob. 35.10DQCh. 35 - If the monochromatic light shown in Fig. 35.5a...Ch. 35 - In using the superposition principle to calculate...Ch. 35 - Prob. 35.13DQCh. 35 - A very thin soap film (n = 1.33), whose thickness...Ch. 35 - Interference can occur in thin films. Why is it...Ch. 35 - If we shine while light on an air wedge like that...Ch. 35 - Prob. 35.17DQCh. 35 - When a thin oil film spreads out on a puddle of...Ch. 35 - Section 35.1 Interference and Coherent Sources...Ch. 35 - Two speakers that are 15.0 m apart produce...Ch. 35 - A radio transmitting station operating at a...Ch. 35 - Radio Interference. Two radio antennas A and B...Ch. 35 - Prob. 35.5ECh. 35 - Two light sources can be adjusted to emit...Ch. 35 - Section 35.2 Two-Source Interference of Light...Ch. 35 - Coherent light with wavelength 450 nm falls on a...Ch. 35 - Two slits spaced 0.450 mm apart are placed 75.0 cm...Ch. 35 - If the entire apparatus of Exercise 35.9 (slits,...Ch. 35 - Two thin parallel slits that are 0.0116 mm apart...Ch. 35 - Coherent light with wavelength 400 nm passes...Ch. 35 - Two very narrow slits are spaced 1.80 m apart and...Ch. 35 - Coherent light that contains two wavelengths. 660...Ch. 35 - Coherent light with wavelength 600 nm passes...Ch. 35 - Coherent light of frequency 6.32 1014 Hz passes...Ch. 35 - In a two-slit interference pattern, the intensity...Ch. 35 - Coherent sources A and B emit electromagnetic...Ch. 35 - Coherent light with wavelength 500 nm passes...Ch. 35 - Two slits spaced 0.260 mm apart are 0.900 m from a...Ch. 35 - Consider two antennas separated by 9.00 m that...Ch. 35 - Two slits spaced 0.0720 mm apart are 0.800 m from...Ch. 35 - What is the thinnest film of a coating with n =...Ch. 35 - Nonglare Glass. When viewing a piece of art that...Ch. 35 - Two rectangular pieces of plane glass are laid one...Ch. 35 - A place of glass 9.00 cm long is placed in contact...Ch. 35 - A uniform film of TiO2, 1036 nm thick and having...Ch. 35 - A plastic film with index of refraction 1.70 is...Ch. 35 - The walls of a soap bubble have about the same...Ch. 35 - A researcher measures the thickness of a layer of...Ch. 35 - Prob. 35.31ECh. 35 - What is the thinnest soap film (excluding the case...Ch. 35 - How far must the mirror M2 (see Fig. 35.19) of the...Ch. 35 - Jan first uses a Michelson interferometer with the...Ch. 35 - One round face of a 3.25-m, solid, cylindrical...Ch. 35 - Newtons rings are visible when a planoconvex lens...Ch. 35 - BIO Coating Eyeglass Lenses. Eyeglass lenses can...Ch. 35 - BIO Sensitive Eyes. After an eye examination, you...Ch. 35 - Two flat plates of glass with parallel faces are...Ch. 35 - In a setup similar to that of Problem 35.39, the...Ch. 35 - Suppose you illuminate two thin slits by...Ch. 35 - CP CALC A very thin sheet of brass contains two...Ch. 35 - Two radio antennas radiating in phase are located...Ch. 35 - Prob. 35.44PCh. 35 - CP A thin uniform film of refractive index 1.750...Ch. 35 - GPS Transmission. The GPS (Global Positioning...Ch. 35 - White light reflects at normal incidence from the...Ch. 35 - Laser light of wavelength 510 nm is traveling in...Ch. 35 - Red light with wavelength 700 nm is passed through...Ch. 35 - BIO Reflective Coatings and Herring. Herring and...Ch. 35 - After a laser beam passes through two thin...Ch. 35 - DATA In your summer job at an optics company, you...Ch. 35 - DATA Short-wave radio antennas A and B are...Ch. 35 - DATA In your research lab, a very thin, flat piece...Ch. 35 - CP The index of refraction of a glass rod is 1.48...Ch. 35 - CP Figure P35.56 shows an interferometer known as...Ch. 35 - INTERFERENCE AND SOUND WAVES. Interference occurs...Ch. 35 - The professor returns the apparatus to the...Ch. 35 - The professor again returns the apparatus to its...Ch. 35 - The professor once again returns the apparatus to...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Spectra Interference: Crash Course Physics #40; Author: CrashCourse;https://www.youtube.com/watch?v=-ob7foUzXaY;License: Standard YouTube License, CC-BY