Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
9th Edition
ISBN: 9781305372337
Author: Raymond A. Serway | John W. Jewett
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 38, Problem 61AP

(a)

To determine

The angle of the second order ray in diffraction grating.

(a)

Expert Solution
Check Mark

Answer to Problem 61AP

The angle of the second order ray in the diffraction grating that has 400 grooves/mm is 25.6° .

Explanation of Solution

Given info: The number of grooves per mm in the diffraction grating is 400, the incident wavelength is 541nm

Formula to calculate angle of mth order ray is ,

θ=sin1(mλd) (1)

Here,

d is the grid spacing.

θ angle of the mth order ray.

λ wavelength of the incident light.

First calculate the grid spacing, formula to calculate grid spacing is,

d=1numberofgroovespermetre (2)

Substitute 400mm for numberofgroovespermetre in equation (2)

d=1numberofgroovespermetre=1400mm=1400mm×1m103mm=2.50×106m (3)

Substitute 2.50×106m for d , 2 for m and 541nm for λ (1),

θ=sin1(mλd)=sin1(2×541nm2.50×106m)=sin1(2×541nm×1m109nm2.50×106m)=25.6°

Conclusion:

Therefore, The angle of the second order ray in the diffraction grating that has 400 grooves/mm is 25.6° .

(b)

To determine

The change in the angle of the second order ray in the diffraction grating if the apparatus is in water.

(b)

Expert Solution
Check Mark

Answer to Problem 61AP

If the apparatus is submerged in the water the angle of the second order ray in the diffraction grating that has 400grooves/mm is 18.9°

Explanation of Solution

Given info: The number of grooves per mm in the diffraction grating is 400, the incident wavelength is 541nm The refractive index of the water is 1.33

From equation (1) formula to calculate angle of mth order ray in water is

θ=sin1(mλd) (4)

Here,

λ is the wavelength of the light in water

The whole apparatus is now submerged into water therefore the wavelength of the incident light will be reduced to factor of the refractive index of water.

The new incident wavelength is

λ=λn (5)

Here,

λ is the wavelength of the incident light.

n is the refractive index of water.

Substitute 1.33 for n , 541nm for λ in equation (5),

λ=λn=541nm×1m109nm1.33=4.06×107m (6)

From equation (6), substitute 4.06×107m for λ 2.50×106m for d , 2 for m , in equation (4).

θ=sin1(mλd)=sin1(2×4.06×107m2.50×106m)=18.9°

Conclusion:

Therefore, if the apparatus is submerged in the water the angle of the second order ray in the diffraction grating that has 400 grooves/mm is 18.9°

(c)

To determine

To show: The two diffracted rays from part (a) and part (b) are related through the law of refraction.

(c)

Expert Solution
Check Mark

Answer to Problem 61AP

The relation between the diffracted rays for the part (a) and part b is n2dsinθ=n1dsinθ satisfying the law of refraction.

Explanation of Solution

 for the part (a) from equation (1),

θ=sin1(mλd)dsinθ=mλ (7)

For second order ray substitute 2 for m in equation (7)

dsinθ=mλdsinθ=2λ (8)

From equation (4) for the second part when the apparatus is submerged in water,

dsinθ=mλ (9)

Form equation (5) Substitute λn for λ in equation (9)

dsinθ=mλdsinθ=mλnndsinθ=mλ

For second order, ray substitute 2 for m in the above equation.

ndsinθ=2λ (10)

Compare equation (8) and (10).

ndsinθ=dsinθ

Substitute n2 for n in left hand side of the equation n1 for 1 in the right hand side of the above equation.

ndsinθ=dsinθn2dsinθ=1×dsinθn2dsinθ=n1dsinθ (11)

Here,

n2 is the refractive index of the material

n1 is the refractive index of the air.

From equation (11), it is evident that it can be expressed in terms of law of refraction.

Conclusion:

Therefore, the two diffracted rays of part (a) and part (b) is related through law of refraction.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Astronomers observe the chromosphere of the Sun with a filter that passes the red hydrogen spectral line of wavelength 656.3 nm, called the Hα line. The filter consists of a transparent dielectric of thickness d held between two partially aluminized glass plates. The filter is kept at a constant temperature. (a) Find the minimum value of dα light if the dielectric has an index of refraction of 1.378. (b) If the temperature of the filter increases above the normal value increasing its thickness, what happens to the transmitted wavelength? (c) The dielectric will also pass what near-visible wavelength? One of the glass plates is colored red to absorb this light.
A thin layer of a transparent material that has an index of refraction of 1.25 is used as a nonreflective coating on the surface of glass that has an index of refraction of 1.50. What should the minimum thickness of the material be for the material to be nonreflecting for light that has a wavelength of 578 nm?
The light from a krypton laser has a wavelength of 647.1 nm in air. As the light travels from air into acrylic glass (n =1.491), calculate (a) its speed in acrylic glass, (b) its wavelength in acrylic glass, (c) its critical angle in acrylic glass surrounded by air, and (d) its frequency.

Chapter 38 Solutions

Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University

Ch. 38 - Prob. 4OQCh. 38 - Prob. 5OQCh. 38 - Prob. 6OQCh. 38 - Prob. 7OQCh. 38 - Prob. 8OQCh. 38 - Prob. 9OQCh. 38 - Prob. 10OQCh. 38 - Prob. 11OQCh. 38 - Prob. 12OQCh. 38 - Prob. 1CQCh. 38 - Prob. 2CQCh. 38 - Prob. 3CQCh. 38 - Prob. 4CQCh. 38 - Prob. 5CQCh. 38 - Prob. 6CQCh. 38 - Prob. 7CQCh. 38 - Prob. 8CQCh. 38 - Prob. 9CQCh. 38 - Prob. 10CQCh. 38 - Prob. 11CQCh. 38 - Prob. 12CQCh. 38 - Prob. 1PCh. 38 - Prob. 2PCh. 38 - Prob. 3PCh. 38 - Prob. 4PCh. 38 - Prob. 5PCh. 38 - Prob. 6PCh. 38 - Prob. 7PCh. 38 - Prob. 8PCh. 38 - Prob. 9PCh. 38 - Prob. 10PCh. 38 - Prob. 11PCh. 38 - Coherent light of wavelength 501.5 nm is sent...Ch. 38 - Prob. 13PCh. 38 - Prob. 14PCh. 38 - Prob. 15PCh. 38 - Prob. 16PCh. 38 - Prob. 17PCh. 38 - Prob. 18PCh. 38 - What is the approximate size of the smallest...Ch. 38 - Prob. 20PCh. 38 - Prob. 21PCh. 38 - Prob. 22PCh. 38 - Prob. 23PCh. 38 - Prob. 24PCh. 38 - Prob. 25PCh. 38 - Prob. 26PCh. 38 - Consider an array of parallel wires with uniform...Ch. 38 - Prob. 28PCh. 38 - Prob. 29PCh. 38 - A grating with 250 grooves/mm is used with an...Ch. 38 - Prob. 31PCh. 38 - Prob. 32PCh. 38 - Light from an argon laser strikes a diffraction...Ch. 38 - Show that whenever white light is passed through a...Ch. 38 - Prob. 35PCh. 38 - Prob. 36PCh. 38 - Prob. 37PCh. 38 - Prob. 38PCh. 38 - Prob. 39PCh. 38 - Prob. 40PCh. 38 - Prob. 41PCh. 38 - Prob. 42PCh. 38 - Prob. 43PCh. 38 - Prob. 44PCh. 38 - Prob. 45PCh. 38 - Prob. 46PCh. 38 - Prob. 47PCh. 38 - Prob. 48PCh. 38 - Prob. 49PCh. 38 - Prob. 50PCh. 38 - Prob. 51PCh. 38 - Prob. 52PCh. 38 - Prob. 53APCh. 38 - Prob. 54APCh. 38 - Prob. 55APCh. 38 - Prob. 56APCh. 38 - Prob. 57APCh. 38 - Prob. 58APCh. 38 - Prob. 59APCh. 38 - Prob. 60APCh. 38 - Prob. 61APCh. 38 - Prob. 62APCh. 38 - Prob. 63APCh. 38 - Prob. 64APCh. 38 - Prob. 65APCh. 38 - Prob. 66APCh. 38 - Prob. 67APCh. 38 - Prob. 68APCh. 38 - Prob. 69APCh. 38 - Prob. 70APCh. 38 - Prob. 71APCh. 38 - Prob. 72APCh. 38 - Prob. 73APCh. 38 - Light of wavelength 632.8 nm illuminates a single...Ch. 38 - Prob. 75CPCh. 38 - Prob. 76CPCh. 38 - Prob. 77CPCh. 38 - Prob. 78CPCh. 38 - Prob. 79CP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Spectra Interference: Crash Course Physics #40; Author: CrashCourse;https://www.youtube.com/watch?v=-ob7foUzXaY;License: Standard YouTube License, CC-BY