Physics for Scientists and Engineers with Modern, Revised Hybrid (with Enhanced WebAssign Printed Access Card for Physics, Multi-Term Courses)
Physics for Scientists and Engineers with Modern, Revised Hybrid (with Enhanced WebAssign Printed Access Card for Physics, Multi-Term Courses)
9th Edition
ISBN: 9781305266292
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
bartleby

Videos

Question
Book Icon
Chapter 39, Problem 56P
To determine

The minimum energy required to produce an electron and positron from gamma ray.

Blurred answer
Students have asked these similar questions
A linear particle accelerator using beta particles collides electrons with their anti-matter counterparts, positrons. The accelerated electron hits the stationary positron with a velocity of 19 x 106 m/s, causing the two particles to annihilate.If two gamma photons are created as a result, calculate the energy of each of these two photons, giving your answer in MeV (mega electron volts), accurate to 1 decimal place. Take the mass of the electron to be 5.486 x 10-4 u, or 9.109 x 10-31 kg.Note: Assume that the kinetic energy is also converted into the gamma rays, and is included in the two photons.
A linear particle accelerator using beta particles collides electrons with their anti-matter counterparts, positrons. The accelerated electron hits the stationary positron with a velocity of 29 x 106 m/s, causing the two particles to annihilate.If two gamma photons are created as a result, calculate the energy of each of these two photons, giving your answer in MeV (mega electron volts), accurate to 1 decimal place. Take the mass of the electron to be 5.486 x 10-4 u, or 9.109 x 10-31 kg.
An iron nail has a mass of 15.0 g. What is the energy (in Joules) that would be required to break all the iron nuclei into their constituent protons and neutrons? Ignore the energy that binds the electrons to the nucleus and the energy that binds one atom to another in the structure of the metal. For simplicity, assume that all the iron nuclei are 56 Fe (atomic mass = 55.934 939 u).

Chapter 39 Solutions

Physics for Scientists and Engineers with Modern, Revised Hybrid (with Enhanced WebAssign Printed Access Card for Physics, Multi-Term Courses)

Ch. 39 - A spacecraft zooms past the Earth with a constant...Ch. 39 - Prob. 3OQCh. 39 - Prob. 4OQCh. 39 - Prob. 5OQCh. 39 - Prob. 6OQCh. 39 - Prob. 7OQCh. 39 - Prob. 8OQCh. 39 - Prob. 9OQCh. 39 - Prob. 10OQCh. 39 - Prob. 1CQCh. 39 - Prob. 2CQCh. 39 - Prob. 3CQCh. 39 - Prob. 4CQCh. 39 - Prob. 5CQCh. 39 - Prob. 6CQCh. 39 - Prob. 7CQCh. 39 - Prob. 8CQCh. 39 - Prob. 9CQCh. 39 - Prob. 10CQCh. 39 - Prob. 11CQCh. 39 - Prob. 12CQCh. 39 - Prob. 13CQCh. 39 - Prob. 14CQCh. 39 - Prob. 1PCh. 39 - In a laboratory frame of reference, an observer...Ch. 39 - The speed of the Earth in its orbit is 29.8 km/s....Ch. 39 - Prob. 4PCh. 39 - A star is 5.00 ly from the Earth. At what speed...Ch. 39 - Prob. 6PCh. 39 - Prob. 7PCh. 39 - Prob. 8PCh. 39 - Prob. 9PCh. 39 - An astronaut is traveling in a space vehicle...Ch. 39 - Prob. 11PCh. 39 - Prob. 12PCh. 39 - Prob. 13PCh. 39 - Prob. 14PCh. 39 - Prob. 15PCh. 39 - Prob. 16PCh. 39 - Prob. 17PCh. 39 - A cube of steel has a volume of 1.00 cm3 and mass...Ch. 39 - Prob. 19PCh. 39 - Prob. 20PCh. 39 - Prob. 21PCh. 39 - Review. In 1963, astronaut Gordon Cooper orbited...Ch. 39 - Prob. 23PCh. 39 - Prob. 24PCh. 39 - Prob. 25PCh. 39 - Prob. 26PCh. 39 - Prob. 27PCh. 39 - Prob. 28PCh. 39 - Prob. 29PCh. 39 - Prob. 30PCh. 39 - Prob. 31PCh. 39 - Prob. 32PCh. 39 - Prob. 33PCh. 39 - Prob. 34PCh. 39 - Prob. 35PCh. 39 - Prob. 36PCh. 39 - Prob. 37PCh. 39 - Prob. 38PCh. 39 - Prob. 39PCh. 39 - Prob. 40PCh. 39 - Prob. 41PCh. 39 - Prob. 42PCh. 39 - Prob. 43PCh. 39 - Prob. 44PCh. 39 - Prob. 45PCh. 39 - Prob. 46PCh. 39 - Prob. 47PCh. 39 - (a) Find the kinetic energy of a 78.0-kg...Ch. 39 - Prob. 49PCh. 39 - Prob. 50PCh. 39 - Prob. 51PCh. 39 - Consider electrons accelerated to a total energy...Ch. 39 - Prob. 53PCh. 39 - Prob. 54PCh. 39 - Prob. 55PCh. 39 - Prob. 56PCh. 39 - Prob. 57PCh. 39 - Prob. 58PCh. 39 - Prob. 59PCh. 39 - Prob. 60PCh. 39 - Prob. 61PCh. 39 - An unstable particle with mass m = 3.34 1027 kg...Ch. 39 - Prob. 63PCh. 39 - Prob. 64PCh. 39 - Prob. 65PCh. 39 - Prob. 66APCh. 39 - Prob. 67APCh. 39 - Prob. 68APCh. 39 - Prob. 69APCh. 39 - Prob. 70APCh. 39 - Prob. 71APCh. 39 - Prob. 72APCh. 39 - Prob. 73APCh. 39 - Prob. 74APCh. 39 - Prob. 75APCh. 39 - Prob. 76APCh. 39 - Prob. 77APCh. 39 - Prob. 78APCh. 39 - Prob. 79APCh. 39 - Prob. 80APCh. 39 - Prob. 81APCh. 39 - Prob. 82APCh. 39 - An alien spaceship traveling at 0.600c toward the...Ch. 39 - Prob. 84APCh. 39 - Prob. 85APCh. 39 - Prob. 86APCh. 39 - Prob. 87APCh. 39 - Prob. 88CPCh. 39 - The creation and study of new and very massive...Ch. 39 - Prob. 90CPCh. 39 - Owen and Dina are at rest in frame S, which is...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Time Dilation - Einstein's Theory Of Relativity Explained!; Author: Science ABC;https://www.youtube.com/watch?v=yuD34tEpRFw;License: Standard YouTube License, CC-BY