GEN, ORG & BIOL CHEM: CUSTOM SSC
GEN, ORG & BIOL CHEM: CUSTOM SSC
5th Edition
ISBN: 9781307274448
Author: SMITH
Publisher: MCG CUSTOM
bartleby

Concept explainers

Question
Book Icon
Chapter 4, Problem 4.21P

(a)

Interpretation Introduction

Interpretation:

Calculate the final flame temperature of ethylene if ethylene is heated from initial temperature 25oC with burned theoretical amount of air at 25oC .

Concept Introduction:

Since we need to calculate flame temperature, hence we will consider composition of product gas.

The transfer of heat is defined as:

  Q=ΔHP=RT0TΔCPRdT

                        .....(1)

Where ΔH is heat of reaction at any temperature T .

and

  T0TΔCPRdT=(ΔA)T0(τ1)+ΔB2T02(τ21)+ΔC3T03(τ31)+ΔDT0(τ1τ)

                        .....(2)

Where τ=TT0

(a)

Expert Solution
Check Mark

Answer to Problem 4.21P

  T=2533.38K

Explanation of Solution

Given information:

  T0=25oC=25+273.15K=298.15K

  T=?oC=T+273.15K

The standard enthalpies of formation at standard temperature 298K are written from appendix C table C.4.

Values are:

ΔHC2H4=52510Jmol, ΔHCO2=393509Jmol and ΔHH2O(l)=285830Jmol and ΔHO2=0Jmol

The ethylene is burned with theoretical amount of air according to reaction:

  C2H4(g)+3O22CO2(g)+2H2O(g)

                        .....(A)

Applying energy balance and considering steady state process,

  ΔH298K+ΔHP=0ΔHP=ΔH298K

  ΔH298K =ΔHPΔHRΔH298K =nCO2×ΔHCO2+nH2O×ΔHH2OnC2H4×ΔHC2H4nO2×ΔHO2

  ΔH298K =(2×393509Jmol)+(2×241818Jmol)(1×52510Jmol)(3×0Jmol)ΔH298K =1323164Jmol×1kJ1000J=1323.164kJmol

Hence ΔHP=ΔH298K=1323164Jmol

Now,

The product gas has nitrogen, carbon dioxide and water gas if complete combustion takes place with theoretical amount of air.

The one mole of ethylene burns with three moles of air for the complete combustion and the ratio of Nitrogen: Oxygen in the air is 79:21, So the total moles of unreacted nitrogen come with product gas is 3mol×7921=11.286mol 

The one mole of ethylene gives two moles of carbon dioxide and water gas after the complete combustion.

So, composition of product gas is:

  nN2=11.286mol nCO2=2molnH2O=2mol

  nO2=0

To find value of constants in equation (2),

  ΔA=νiAiΔB=νiBiΔC=νiCiΔD=νiDi

Values of above constants are given in appendix C table C.1 and noted down below:

So,

  ΔA=νiAi=2×5.457+11.286×3.280+2×3.47=54.8721ΔA=54.8721ΔB=νiBi=2×1.045×103+11.286×0.593×103+2×1.45×103=11.68×103ΔB=11.68×103ΔC=νiCi=2×0+11.286×0+2×0=0ΔC=0ΔD=νiDi=2×1.157×105+11.286×0.04×105+2×0.121×105=162056ΔD=162056

So, from equation (2)

  T0TΔCPRdT=(ΔA)T0(τ1)+ΔB2T02(τ21)+ΔC3T03(τ31)+ΔDT0(τ1τ)

Put the values

  T0TΔ C PRdT=54.8721×298.15×(τ1)+11.68×1032298.152(τ21)+03298.153(τ31)+162056298.15(τ1τ)298.15TΔCPRdT=16360.12(τ1)+519.14(τ21)543.54(τ1τ)298.15TΔCPRdT=16360.12τ16360.12+519.14τ2519.14543.54+543.54τ298.15TΔCPRdT=519.14τ2+16360.12τ17422.8+543.54τ

Now from equation (1),

  1323.164kJmol=RT0TΔ C PRdT1323164Jmol=8.314JmolK×T0TΔCPRdT159148.9K=T0TΔCPRdT

Put in above

  159148.9K=298.15TΔ C PRdT=519.14τ2+16360.12τ17422.8+543.54τ176571.7=519.14τ2+16360.12τ+543.54τ

On solving,

  τ=8.497

Hence,

  τ=TT0=T25+273.15=8.497T=2533.38K

(b)

Interpretation Introduction

Interpretation:

Calculate the final flame temperature of ethylene if ethylene is burned from initial temperature 25oC with 25% excess air at 25oC .

Concept Introduction:

Since we need to calculate flame temperature, hence we will consider composition of product gas.

The transfer of heat is defined as:

  Q=ΔHP=RT0TΔCPRdT

                        .....(1)

Where ΔH is heat of reaction at any temperature T .

and

  T0TΔCPRdT=(ΔA)T0(τ1)+ΔB2T02(τ21)+ΔC3T03(τ31)+ΔDT0(τ1τ)

                        .....(2)

Where τ=TT0

(b)

Expert Solution
Check Mark

Answer to Problem 4.21P

  T=2577.036K

Explanation of Solution

Given information:

  T0=25oC=25+273.15K=298.15K

  T=?oC=T+273.15K

The standard enthalpies of formation at standard temperature 298K are written from appendix C table C.4.

Values are:

ΔHC2H4=52510Jmol, ΔHCO2=393509Jmol and ΔHH2O(l)=285830Jmol and ΔHO2=0Jmol

The ethylene is burned with theoretical amount of air according to reaction:

  C2H4(g)+3O22CO2(g)+2H2O(g)

                        .....(A)

Applying energy balance and considering steady state process,

  ΔH298K+ΔHP=0ΔHP=ΔH298K

  ΔH298K =ΔHPΔHRΔH298K =nCO2×ΔHCO2+nH2O×ΔHH2OnC2H4×ΔHC2H4nO2×ΔHO2

  ΔH298K =(2×393509Jmol)+(2×241818Jmol)(1×52510Jmol)(3×0Jmol)ΔH298K =1323164Jmol×1kJ1000J=1323.164kJmol

Hence ΔHP=ΔH298K=1323164Jmol

Now,

For 25% excess air, number of moles of ethylene will be same as it will be limiting reagents for fully combustion reaction and hence fully consumed in the reaction. So only nO2=3 moles of oxygen are required for it, rest excess moles will be come out from furnace. Same nitrogen moles will not consume in the furnace, so it will be also in product stream with extra moles of nitrogen fed with feed.

  nO2withexcessair25%=3+3×0.25=3.75

  nO2=3 moles of oxygen are required for the reaction so, In product stream   nO2=3.753=0.75

The one mole of ethylene gives two moles of carbon dioxide and water gas after the complete combustion.

  nCO2=2mol

  nH2O=2mol

  nN2=Numberofmolesofnitrogendueto 25%excessair

The proportion of composition of nitrogen: oxygen in air is N2:O2=79:21, So  nN2=7921×3.75=14.107

To find value of constants in equation (2),

  ΔA=νiAiΔB=νiBiΔC=νiCiΔD=νiDi

Values of above constants are given in appendix C table C.1 and noted down below:

So,

  ΔA=νiAi=2×5.457+14.107×3.280+0.75×3.639+2×3.47=66.8542ΔA=66.8542ΔB=νiBi=2×1.045×103+14.107×0.593×103+0.75×0.506×103+2×1.45×103=13.73×103ΔB=13.73×103ΔC=νiCi=2×0+14.107×0+0.75×0+2×0=0ΔC=0ΔD=νiDi=2×1.157×105+14.107×0.04×105+0.75×0.227×105+2×0.121×105=167797ΔD=167797

So, from equation (2)

  T0TΔCPRdT=(ΔA)T0(τ1)+ΔB2T02(τ21)+ΔC3T03(τ31)+ΔDT0(τ1τ)

Put the values

  T0TΔ C PRdT=66.8542×298.15×(τ1)+13.73×1032298.152(τ21)+03298.153(τ31)+167797298.15(τ1τ)298.15TΔCPRdT=19932.58(τ1)+610.25(τ21)562.794(τ1τ)298.15TΔCPRdT=19932.58τ19932.58+610.25τ2610.25562.794+562.794τ298.15TΔCPRdT=610.25τ2+19932.58τ21105.624+562.794τ

Now from equation (1),

  1323.164kJmol=RT0TΔ C PRdT1323164Jmol=8.314JmolK×T0TΔCPRdT159148.9K=T0TΔCPRdT

Put in above

  159148.9K=298.15TΔ C PRdT=610.25τ2+19932.58τ21105.624+562.794τ180254.524=519.14τ2+16360.12τ+543.54τ

On solving,

  τ=8.64342

Hence,

  τ=TT0=T25+273.15=8.64342T=2577.036K

(c)

Interpretation Introduction

Interpretation:

Calculate the final flame temperature of ethylene if ethylene is burned from initial temperature 25oC with 50% excess air at 25oC .

Concept Introduction:

Since we need to calculate flame temperature, hence we will consider composition of product gas.

The transfer of heat is defined as:

  Q=ΔHP=RT0TΔCPRdT

                        .....(1)

Where ΔH is heat of reaction at any temperature T .

and

  T0TΔCPRdT=(ΔA)T0(τ1)+ΔB2T02(τ21)+ΔC3T03(τ31)+ΔDT0(τ1τ)

                        .....(2)

Where τ=TT0

(c)

Expert Solution
Check Mark

Answer to Problem 4.21P

  T=2626.7K

Explanation of Solution

Given information:

  T0=25oC=25+273.15K=298.15K

  T=?oC=T+273.15K

The standard enthalpies of formation at standard temperature 298K are written from appendix C table C.4.

Values are:

ΔHC2H4=52510Jmol, ΔHCO2=393509Jmol and ΔHH2O(l)=285830Jmol and ΔHO2=0Jmol

The ethylene is burned with theoretical amount of air according to reaction:

  C2H4(g)+3O22CO2(g)+2H2O(g)

                        .....(A)

Applying energy balance and considering steady state process,

  ΔH298K+ΔHP=0ΔHP=ΔH298K

  ΔH298K =ΔHPΔHRΔH298K =nCO2×ΔHCO2+nH2O×ΔHH2OnC2H4×ΔHC2H4nO2×ΔHO2

  ΔH298K =(2×393509Jmol)+(2×241818Jmol)(1×52510Jmol)(3×0Jmol)ΔH298K =1323164Jmol×1kJ1000J=1323.164kJmol

Hence ΔHP=ΔH298K=1323164Jmol

Now,

For 50% excess air, number of moles of ethylene will be same as it will be limiting reagents for fully combustion reaction and hence fully consumed in the reaction. So only nO2=3 moles of oxygen are required for it, rest excess moles will be come out from furnace. Same nitrogen moles will not consume in the furnace, so it will be also in product stream with extra moles of nitrogen fed with feed.

  nO2withexcessair50%=3+3×0.5=4.5

  nO2=3 moles of oxygen are required for the reaction so, In product stream   nO2=4.53=1.5

The one mole of ethylene gives two moles of carbon dioxide and water gas after the complete combustion.

  nCO2=2mol

  nH2O=2mol

  nN2=Numberofmolesofnitrogendueto50%excessair

The proportion of composition of nitrogen:oxygen in air is N2:O2=79:21, So  nN2=7921×4.5=16.929

To find value of constants in equation (2),

  ΔA=νiAiΔB=νiBiΔC=νiCiΔD=νiDi

Values of above constants are given in appendix C table C.1 and noted down below:

So,

  ΔA=νiAi=2×5.457+16.929×3.280+1.5×3.639+2×3.47=78.8396ΔA=78.8396ΔB=νiBi=2×1.045×103+16.929×0.593×103+1.5×0.506×103+2×1.45×103=15.79×103ΔB=15.79×103ΔC=νiCi=2×0+16.929×0+1.5×0+2×0=0ΔC=0ΔD=νiDi=2×1.157×105+16.929×0.04×105+1.5×0.227×105+2×0.121×105=173534ΔD=173534

So, from equation (2)

  T0TΔCPRdT=(ΔA)T0(τ1)+ΔB2T02(τ21)+ΔC3T03(τ31)+ΔDT0(τ1τ)

Put the values

  T0TΔ C PRdT=78.8396×298.15×(τ1)+15.79×1032298.152(τ21)+03298.153(τ31)+173534298.15(τ1τ)298.15TΔCPRdT=23506.027(τ1)+701.81(τ21)582.036(τ1τ)298.15TΔCPRdT=23506.027τ23506.027+701.81τ2701.81582.036+582.036τ298.15TΔCPRdT=701.81τ2+23506.027τ24789.873+582.036τ

Now from equation (1),

  1323.164kJmol=RT0TΔ C PRdT1323164Jmol=8.314JmolK×T0TΔCPRdT159148.9K=T0TΔCPRdT

Put in above

  159148.9K=298.15TΔ C PRdT=701.81τ2+23506.027τ24789.873+582.036τ184538.773=519.14τ2+16360.12τ+543.54τ

On solving,

  τ=8.81

Hence,

  τ=TT0=T25+273.15=8.81T=2626.7K

(d)

Interpretation Introduction

Interpretation:

Calculate the final flame temperature of ethylene if ethylene is burned from initial temperature 25oC with 100% excess air at 25oC .

Concept Introduction:

Since we need to calculate flame temperature, hence we will consider composition of product gas.

The transfer of heat is defined as:

  Q=ΔHP=RT0TΔCPRdT

                        .....(1)

Where ΔH is heat of reaction at any temperature T .

and

  T0TΔCPRdT=(ΔA)T0(τ1)+ΔB2T02(τ21)+ΔC3T03(τ31)+ΔDT0(τ1τ)

                        .....(2)

Where τ=TT0

(d)

Expert Solution
Check Mark

Answer to Problem 4.21P

  T=2704.22K

Explanation of Solution

Given information:

  T0=25oC=25+273.15K=298.15K

  T=?oC=T+273.15K

The standard enthalpies of formation at standard temperature 298K are written from appendix C table C.4.

Values are:

ΔHC2H4=52510Jmol, ΔHCO2=393509Jmol and ΔHH2O(l)=285830Jmol and ΔHO2=0Jmol

The ethylene is burned with theoretical amount of air according to reaction:

  C2H4(g)+3O22CO2(g)+2H2O(g)

                        .....(A)

Applying energy balance and considering steady state process,

  ΔH298K+ΔHP=0ΔHP=ΔH298K

  ΔH298K =ΔHPΔHRΔH298K =nCO2×ΔHCO2+nH2O×ΔHH2OnC2H4×ΔHC2H4nO2×ΔHO2

  ΔH298K =(2×393509Jmol)+(2×241818Jmol)(1×52510Jmol)(3×0Jmol)ΔH298K =1323164Jmol×1kJ1000J=1323.164kJmol

Hence ΔHP=ΔH298K=1323164Jmol

Now,

For 100% excess air, number of moles of ethylene will be same as it will be limiting reagents for fully combustion reaction and hence fully consumed in the reaction. So only nO2=3 moles of oxygen are required for it, rest excess moles will be come out from furnace. Same nitrogen moles will not consume in the furnace, so it will be also in product stream with extra moles of nitrogen fed with feed.

  nO2withexcessair50%=3+3×1=6

  nO2=3 moles of oxygen are required for the reaction so, In product stream   nO2=63=3

The one mole of ethylene gives two moles of carbon dioxide and water gas after the complete combustion.

  nCO2=2mol

  nH2O=2mol

  nN2=Numberofmolesofnitrogendueto50%excessair

The proportion of composition of nitrogen: oxygen in air is N2:O2=79:21, So  nN2=7921×6=22.57

To find value of constants in equation (2),

  ΔA=νiAiΔB=νiBiΔC=νiCiΔD=νiDi

Values of above constants are given in appendix C table C.1 and noted down below:

So,

  ΔA=νiAi=2×5.457+22.57×3.280+3×3.639+2×3.47=102.8006ΔA=102.8ΔB=νiBi=2×1.045×103+22.57×0.593×103+3×0.506×103+2×1.45×103=19.89×103ΔB=19.89×103ΔC=νiCi=2×0+22.57×0+3×0+2×0=0ΔC=0ΔD=νiDi=2×1.157×105+22.57×0.04×105+3×0.227×105+2×0.121×105=185020ΔD=185020

So, from equation (2)

  T0TΔCPRdT=(ΔA)T0(τ1)+ΔB2T02(τ21)+ΔC3T03(τ31)+ΔDT0(τ1τ)

Put the values

  T0TΔ C PRdT=102.8×298.15×(τ1)+19.89×1032298.152(τ21)+03298.153(τ31)+185020298.15(τ1τ)298.15TΔCPRdT=30649.82(τ1)+884.045(τ21)620.56(τ1τ)298.15TΔCPRdT=30649.82τ30649.82+884.045τ2884.045620.56+620.56τ298.15TΔCPRdT=884.045τ2+30649.82τ32154.425+620.56τ

Now from equation (1),

  1323.164kJmol=RT0TΔ C PRdT1323164Jmol=8.314JmolK×T0TΔCPRdT159148.9K=T0TΔCPRdT

Put in above

  159148.9K=298.15TΔ C PRdT=884.045τ2+30649.82τ32154.425+620.56τ191303.32=519.14τ2+16360.12τ+543.54τ

On solving,

  τ=9.07

Hence,

  τ=TT0=T25+273.15=9.07T=2704.22K

(e)

Interpretation Introduction

Interpretation:

Calculate the final flame temperature of ethylene if ethylene is burned from initial temperature 25oC with 50% excess air preheated to 500oC .

Concept Introduction:

Since we need to calculate flame temperature, hence we will consider composition of product gas.

The transfer of heat is defined as:

  Q=ΔHP=RT0TΔCPRdT

                        .....(1)

Where ΔH is heat of reaction at any temperature T .

and

  T0TΔCPRdT=(ΔA)T0(τ1)+ΔB2T02(τ21)+ΔC3T03(τ31)+ΔDT0(τ1τ)

                        .....(2)

Where τ=TT0

(e)

Expert Solution
Check Mark

Answer to Problem 4.21P

  T=3044.1115K

Explanation of Solution

Given information:

  T0=25oC=25+273.15K=298.15K

  T=?oC=T+273.15K

The standard enthalpies of formation at standard temperature 298K are written from appendix C table C.4.

Values are:

ΔHC2H4=52510Jmol, ΔHCO2=393509Jmol and ΔHH2O(l)=285830Jmol and ΔHO2=0Jmol

The ethylene is burned with theoretical amount of air according to reaction:

  C2H4(g)+3O22CO2(g)+2H2O(g)

                        .....(A)

Applying energy balance and considering steady state process,

  ΔHair+ΔH298K+ΔHP=0

  ΔH298K =ΔHPΔHRΔH298K =nCO2×ΔHCO2+nH2O×ΔHH2OnC2H4×ΔHC2H4nO2×ΔHO2

  ΔH298K =(2×393509Jmol)+(2×241818Jmol)(1×52510Jmol)(3×0Jmol)ΔH298K =1323164Jmol×1kJ1000J=1323.164kJmol

Temperature of air is increased to 500oC+273.15K=773.15K

So, ΔHair=RT0TΔCPRdT

For air, Values of constants used in equation (2) are given in appendix C table C.1 and noted down below:

  iA103B106C105Dair3.3550.57500.016

Hence,

  T0TΔCPRdT=AT0(τ1)+B2T02(τ21)+C3T03(τ31)+DT0(τ1τ)

  τ=TT0=773.15298.15=2.593

  T0TΔ C PRdTx=3.355×298.15×(2.5931)+0.575×1032298.152(2.59321)+03298.153(2.59331)+0.016×105298.15(2.59312.593)298.15773.15ΔCPRdT=1736.45K

  nairwithexcessair50%=3+3×0.5=4.5

The number of moles of oxygen are therefore, nO2=4.50.21=21.429

For

  ΔHair=RT0TΔ C PRdT=21.429×8.314Jmol K×1736.45KΔHair=309367.16Jmol

Now,

For 50% excess air, number of moles of ethylene will be same as it will be limiting reagents for fully combustion reaction and hence fully consumed in the reaction. So only nO2=3 moles of oxygen are required for it, rest excess moles will be come out from furnace. Same nitrogen moles will not consume in the furnace, so it will be also in product stream with extra moles of nitrogen fed with feed.

  nO2withexcessair50%=3+3×0.5=4.5

  nO2=3 moles of oxygen are required for the reaction so, In product stream   nO2=4.53=1.5

The one mole of ethylene gives two moles of carbon dioxide and water gas after the complete combustion.

  nCO2=2mol

  nH2O=2mol

  nN2=Numberofmolesofnitrogendueto50%excessair

The proportion of composition of nitrogen:oxygen in air is N2:O2=79:21, So  nN2=7921×4.5=16.929

To find value of constants in equation (2),

  ΔA=νiAiΔB=νiBiΔC=νiCiΔD=νiDi

So,

  ΔA=νiAi=2×5.457+16.929×3.280+1.5×3.639+2×3.47=78.8396ΔA=78.8396ΔB=νiBi=2×1.045×103+16.929×0.593×103+1.5×0.506×103+2×1.45×103=15.79×103ΔB=15.79×103ΔC=νiCi=2×0+16.929×0+1.5×0+2×0=0ΔC=0ΔD=νiDi=2×1.157×105+16.929×0.04×105+1.5×0.227×105+2×0.121×105=173534ΔD=173534

So, from equation (2)

  T0TΔCPRdT=(ΔA)T0(τ1)+ΔB2T02(τ21)+ΔC3T03(τ31)+ΔDT0(τ1τ)

Put the values

  T0TΔ C PRdT=78.8396×298.15×(τ1)+15.79×1032298.152(τ21)+03298.153(τ31)+173534298.15(τ1τ)298.15TΔCPRdT=23506.027(τ1)+701.81(τ21)582.036(τ1τ)298.15TΔCPRdT=23506.027τ23506.027+701.81τ2701.81582.036+582.036τ298.15TΔCPRdT=701.81τ2+23506.027τ24789.873+582.036τ

  ΔHair+ΔH298K+ΔHP=0ΔHP=ΔHairΔH298K

  309367.16Jmol+1323.164kJmol=RT0TΔ C PRdT1632531.158Jmol=8.314JmolK×T0TΔCPRdT196359.29K=T0TΔCPRdT

Put in above

  196359.29K=298.15TΔ C PRdT=701.81τ2+23506.027τ24789.873+582.036τ221149.17=519.14τ2+16360.12τ+543.54τ

On solving,

  τ=10.21

Hence,

  τ=TT0=T25+273.15=10.21T=3044.1115K

(f)

Interpretation Introduction

Interpretation:

Calculate the final flame temperature of ethylene if ethylene is burned from initial temperature 25oC with theoretical amount of pure oxygen at 25oC .

Concept Introduction:

Since we need to calculate flame temperature, hence we will consider composition of product gas.

The transfer of heat is defined as:

  Q=ΔHP=RT0TΔCPRdT

                        .....(1)

Where ΔH is heat of reaction at any temperature T .

and

  T0TΔCPRdT=(ΔA)T0(τ1)+ΔB2T02(τ21)+ΔC3T03(τ31)+ΔDT0(τ1τ)

                        .....(2)

Where τ=TT0

(f)

Expert Solution
Check Mark

Answer to Problem 4.21P

  T=2399.81K

Explanation of Solution

Given information:

  T0=25oC=25+273.15K=298.15K

  T=?oC=T+273.15K

The standard enthalpies of formation at standard temperature 298K are written from appendix C table C.4.

Values are:

ΔHC2H4=52510Jmol, ΔHCO2=393509Jmol and ΔHH2O(l)=285830Jmol and ΔHO2=0Jmol

The ethylene is burned with theoretical amount of air according to reaction:

  C2H4(g)+3O22CO2(g)+2H2O(g)

                        .....(A)

Applying energy balance and considering steady state process,

  ΔH298K+ΔHP=0ΔHP=ΔH298K

  ΔH298K =ΔHPΔHRΔH298K =nCO2×ΔHCO2+nH2O×ΔHH2OnC2H4×ΔHC2H4nO2×ΔHO2

  ΔH298K =(2×393509Jmol)+(2×241818Jmol)(1×52510Jmol)(3×0Jmol)ΔH298K =1323164Jmol×1kJ1000J=1323.164kJmol

Hence ΔHP=ΔH298K=1323164Jmol

Now,

The product gas has nitrogen, carbon dioxide and water gas if complete combustion takes place with theoretical amount of air.

The one mole of ethylene gives two moles of carbon dioxide and water gas after the complete combustion.

So, composition of product gas is:

  nCO2=2molnH2O=2mol

  nO2=0

To find value of constants in equation (2),

  ΔA=νiAiΔB=νiBiΔC=νiCiΔD=νiDi

Values of above constants are given in appendix C table C.1 and noted down below:

  iνiA103B106C105DCO225.4571.04501.157H2O23.4701.45000.121

So,

  ΔA=νiAi=2×5.457+2×3.47=17.854ΔA=17.854ΔB=νiBi=2×1.045×103+2×1.45×103=5×103ΔB=5×103ΔC=νiCi=2×0+2×0=0ΔC=0ΔD=νiDi=2×1.157×105+2×0.121×105=207200ΔD=207200

So, from equation (2)

  T0TΔCPRdT=(ΔA)T0(τ1)+ΔB2T02(τ21)+ΔC3T03(τ31)+ΔDT0(τ1τ)

Put the values

  T0TΔ C PRdT=17.854×298.15×(τ1)+5×1032298.152(τ21)+03298.153(τ31)+207200298.15(τ1τ)298.15TΔCPRdT=5323.17(τ1)+222.23(τ21)694.95(τ1τ)298.15TΔCPRdT=5323.17τ5323.17+222.23τ2222.23694.95+694.95τ298.15TΔCPRdT=222.23τ2+5323.17τ6240.35+694.95τ

Now from equation (1),

  1323.164kJmol=RT0TΔ C PRdT1323164Jmol=8.314JmolK×T0TΔCPRdT159148.9K=T0TΔCPRdT

Put in above

  159148.9K=298.15TΔ C PRdT=222.23τ2+5323.17τ6240.35+694.95τ165389.25=519.14τ2+16360.12τ+543.54τ

On solving,

  τ=8.049

Hence,

  τ=TT0=T25+273.15=8.049T=2399.81K

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Knowledge Booster
Background pattern image
Chemical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemical-engineering and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Introduction to Chemical Engineering Thermodynami...
Chemical Engineering
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:McGraw-Hill Education
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemical Engineering
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Text book image
Elements of Chemical Reaction Engineering (5th Ed...
Chemical Engineering
ISBN:9780133887518
Author:H. Scott Fogler
Publisher:Prentice Hall
Text book image
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:9781119285915
Author:Seborg
Publisher:WILEY
Text book image
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:9781285061238
Author:Lokensgard, Erik
Publisher:Delmar Cengage Learning
Text book image
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:9780072848236
Author:Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:McGraw-Hill Companies, The