
College Physics
7th Edition
ISBN: 9780321601834
Author: Jerry D. Wilson, Anthony J. Buffa, Bo Lou
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Question
Chapter 4, Problem 50E
To determine
The tension in the cord between points A and B.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
A rocket is launched straight up with constant acceleration. Four seconds after liftoff, a bolt falls off
the side of the rocket. The bolt hits the ground 6.0 s later. What was the rocket's acceleration?
A roof tile falls from rest from the top of a building. An observer inside the building notices that it takes
0.25 s for the tile to pass her window, which has a height of 1.7 m. How far above the top of this
window is the roof?
A car starts from rest at a stop sign. It accelerates at 2.0 [m/s/s] for 6.0 [s], casts from 2.0 [s], and
then slows at a rate of 1.5 [m/s/s] for the next stop sign. How far apart are the stop signs?
Chapter 4 Solutions
College Physics
Ch. 4 - Prob. 1MCQCh. 4 - A force (a) always produces motion, (b) is a...Ch. 4 - If an object is moving at constant velocity, (a)...Ch. 4 - If the net force on an object is zero, the object...Ch. 4 - The force required to keep a rocket ship moving at...Ch. 4 - Prob. 6MCQCh. 4 - Prob. 7MCQCh. 4 - The weight of an object is directly proportional...Ch. 4 - Prob. 9MCQCh. 4 - A brick hits a glass window. The brick breaks the...
Ch. 4 - Prob. 11MCQCh. 4 - Prob. 12MCQCh. 4 -
The condition(s) for translational equilibrium is...Ch. 4 - Prob. 14MCQCh. 4 - Prob. 15MCQCh. 4 - Prob. 16MCQCh. 4 - Prob. 17MCQCh. 4 - Prob. 1CQCh. 4 - Prob. 2CQCh. 4 - Prob. 3CQCh. 4 - Prob. 4CQCh. 4 - Prob. 5CQCh. 4 - The following is an old trick (Fig. 4.28). If a...Ch. 4 - Prob. 7CQCh. 4 - A student weighing 600 N crouches on a scale and...Ch. 4 - An astronaut has a mass of 70 kg when measured on...Ch. 4 -
In general, this chapter has considered forces...Ch. 4 - Prob. 11CQCh. 4 - Prob. 12CQCh. 4 - Prob. 13CQCh. 4 - Prob. 14CQCh. 4 - Prob. 16CQCh. 4 - Prob. 17CQCh. 4 -
Identify the direction of the friction force in...Ch. 4 - Prob. 19CQCh. 4 - Prob. 20CQCh. 4 - Prob. 21CQCh. 4 - Prob. 22CQCh. 4 - Prob. 23CQCh. 4 - Which has more inertia, 20 cm3 of water or 10 cm3...Ch. 4 - Prob. 2ECh. 4 - In Exercise 2, if the 35-N force acted downward at...Ch. 4 -
A net force of 4.0 N gives an object an...Ch. 4 - Prob. 5ECh. 4 - Prob. 6ECh. 4 - A 5.0-kg block at rest on a frictionless surface...Ch. 4 - (a) You are told that an object has zero...Ch. 4 - A fish weighing 25 lb is caught and hauled onto...Ch. 4 - A 1.5-kg object moves up the y-axis at a constant...Ch. 4 - Three horizontal forces (the only horizontal ones)...Ch. 4 - Prob. 12ECh. 4 - Prob. 13ECh. 4 - Prob. 14ECh. 4 - IE ● A 6.0-kg object is brought to the Moon, where...Ch. 4 - A gun is fired and a 50-g bullet is accelerated to...Ch. 4 - Prob. 17ECh. 4 - Prob. 18ECh. 4 - Prob. 19ECh. 4 - Prob. 20ECh. 4 - Prob. 21ECh. 4 - Prob. 22ECh. 4 - Prob. 23ECh. 4 - Prob. 24ECh. 4 - An object (mass 10.0 kg) slides upward on a...Ch. 4 - In an emergency stop to avoid an accident, a...Ch. 4 - Prob. 27ECh. 4 - A force of 10 N acts on two blocks on a...Ch. 4 - Prob. 29ECh. 4 - In a pole-sliding game among friends, a 90-kg man...Ch. 4 - A book is sitting on a horizontal surface. (a)...Ch. 4 - In an Olympic figure-skating event, a 65-kg male...Ch. 4 -
A sprinter of mass 65.0 kg starts his race by...Ch. 4 - Jane and John, with masses of 50 kg and 60 kg,...Ch. 4 - Prob. 35ECh. 4 - A 75.0-kg person is standing on a scale in an...Ch. 4 - Prob. 37ECh. 4 - Prob. 38ECh. 4 - The weight of a 500-kg object is 4900 N. (a) When...Ch. 4 - A boy pulls a box of mass 30 kg with a force of 25...Ch. 4 - Prob. 41ECh. 4 - Prob. 42ECh. 4 - Prob. 43ECh. 4 - Prob. 44ECh. 4 - Prob. 45ECh. 4 - Assuming ideal frictionless conditions for the...Ch. 4 - Prob. 47ECh. 4 -
A55-kg gymnast hangs vertically from a pair of...Ch. 4 - A physicist’s car has a small lead weight...Ch. 4 - A 10-kg mass is suspended as shown in Fig. 4.41....Ch. 4 - Prob. 51ECh. 4 - Prob. 52ECh. 4 - Prob. 53ECh. 4 - A horizontal force of 40 N acting on a block on a...Ch. 4 - The Atwood machine consists of two masses...Ch. 4 - Prob. 56ECh. 4 - Prob. 57ECh. 4 - Prob. 58ECh. 4 - Prob. 59ECh. 4 - In the frictionless apparatus shown in Fig. 4.43,...Ch. 4 - In the ideal setup shown in Fig. 4.43, m1 = 3.0 kg...Ch. 4 - A20-kg box sits on a rough horizontal surface....Ch. 4 - Prob. 63ECh. 4 - Prob. 64ECh. 4 - Prob. 65ECh. 4 - Prob. 66ECh. 4 - A 1500-kg automobile travels at 90 km/h along a...Ch. 4 - Prob. 68ECh. 4 - Prob. 69ECh. 4 - Prob. 70ECh. 4 - Prob. 71ECh. 4 - Prob. 72ECh. 4 - Suppose the slope conditions for the skier shown...Ch. 4 - Prob. 74ECh. 4 - A block that has a mass of 2.0 kg and is 10 cm...Ch. 4 - In the apparatus shown in Fig. 4.46, m1 = 10 kg...Ch. 4 - In loading a fish delivery truck, a person pushes...Ch. 4 -
An object (mass 3.0 kg) slides upward on a...Ch. 4 - For the apparatus shown in Fig. 4.40, what is the...Ch. 4 - Prob. 81ECh. 4 - Prob. 82ECh. 4 - Prob. 83ECh. 4 - Prob. 84ECh. 4 - Prob. 85ECh. 4 - Prob. 86ECh. 4 - Prob. 87ECh. 4 - Prob. 88E
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A train has a length of 92 m and starts from rest with a constant acceleration at time t = 0 s. At this instant, a car just reaches the end of the train. The car is moving with a constant velocity. At a time t = 14 s, the car just reaches the front of the train. Ultimately, however, the train pulls ahead of the car, and at time t = 28s, the car is again at the rear of the train. Find the magnitudes of (a) the car's velocity and (b) the train's acceleration.arrow_forwardA spaceship is travelling in a straight line. The x-component of the acceleration of the spaceship at time t is known to be a(t) = 12t³ – 2 with the acceleration a measured in m/s² and t measured in seconds. a. Find the x-component of the velocity v(t) of this spaceship up to an integration constant. vx(t) b. What is the change in x-component of the velocity of the spaceship between t₂ = 3 and tƒ 6? = m/s AVx = c. It is also known that the x-component of the velocity of the spaceship at t = 6s is -6 m/s. Find the velocity at t = 0. vx(0) = m/sarrow_forwardA robot is moving along the x-axis. For the time interval t = [0s, 3 s], the x-component of its position as a function of time measured with respect to the origin is given by the following polynomial function: x(t) = 0.2t4 – 3t – 5 a. If the x-component of position, x, is measured in meters, what units should the three numerical constants in the expression above have? Express your answers in m for meters and s for seconds as needed. Units of 0.2: Units of -3: Units of -5: b. What is the x-component of the robot's velocity at time t Vx m/s = 0? c. What is ax, the x-component of the robot's acceleration at time t = 3 s? ах m/s² d. What is xs, the robot's position at the instant when it is momentarily at rest? =arrow_forward
- Peter is training for a race. He first sprints 40 m north. He then walks due south three-quarters of the way back to his starting position. In the following, take north to be the +x direction. Displacement What is Peter's displacement during the sprint? Distance Through what distance does Peter travel during the sprint? dsprint m Ax sprint m What is Peter's displacement during the walk? Through what distance does Peter travel during the walk? dwalk = m Axwalk = m What is Peter's total displacement? Axtotal = What is the total distance through which Peter travels? = m dtotalarrow_forwardPeter is training for a race. He sprints 36 m north in 9 s, then walks due south back to his starting position in a time 27 s. In the following, take north as the +x direction. Average Velocity What is Peter's average velocity as he sprints? Avg spring velocity m/s = Average Speed What is Peter's average speed as he sprints? Avg spring speed m/s What is Peter's average velocity as he walks? Avg walk velocity = m/s What is Peter's average velocity for the whole trip? Avg velocity trip = What is Peter's average speed as he walks? Avg walk speed = m/s What is Peter's average speed for the whole trip? m/s Avg speed trip = m/sarrow_forwardIII 11:43 Quiz LTE 76 Done 5 Formula 1 point 24.0° Next DO 16.0 m/s x (east) The red car had a mass of 1,996 kg. The red car before crash had a speed m/s. Answerarrow_forward
- m₁ V2 marrow_forwardm₁ V2 marrow_forwardFor the three vectors shown, the magnitude of vector A is 5 [m], the magnitude of vector B is 7 [m], and the magnitude of vector C is 4 [m]. (a) Find the x- and y-components of the resultant vector Ŕ = Ả + B + Č. Do not forget to include the directional unit vector for each component. (b) What is the magnitude of the resultant vector Ŕ? (c) In what direction is the resultant vector Ŕ pointing? Write the answer in terms of an angle with the proper indication of the direction. 60.0 degree 20.0 degree +x Carrow_forward
- Exercise No 2 Four forces are exerted on the object shown in the figure. (Forces are measured in newtons, abbreviated N.) The net force on the object is Fnet = F₁ + F₂ + F3 + F₁ = 4.0î N. What are (a) F3 and (b) F₁? Give your answers in component form. y F3 نیا F₁ 5.0 N 6.0 N 20° F₂ xarrow_forwardWhat are the x and y components of the vector that must be added to the following three vectors, so that the sum of the four vectors is zero? Due east is the +x direction, and due north is the ty direction. A113 units, 60.0° south of west B=222 units, 35.0° south of east C=177 units, 23.0° north of eastarrow_forwardPhysics Questionarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley

College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Drawing Free-Body Diagrams With Examples; Author: The Physics Classroom;https://www.youtube.com/watch?v=3rZR7FSSidc;License: Standard Youtube License