Question
Book Icon
Chapter 40, Problem 31AP

(a)

To determine

Prove that, first term of Schrodinger equation reduces to kinetic energy of quantum particle multiplied by wave function for a freely moving particle.

(b)

To determine

Prove that, first term of Schrodinger equation reduces to kinetic energy of quantum particle multiplied by wave function for particle in a box.

Blurred answer
Students have asked these similar questions
For a quantum particle of mass m in the ground state of a square well with length L and infinitely high walls, the uncertainty in position is Δx ≈ L. (a) Use the uncertainty principle to estimate the uncertainty in its momentum.(b) Because the particle stays inside the box, its average momentum must be zero. Its average squared momentum is then ⟨p2⟩ ≈ (Δp)2. Estimate the energy of the particle. (c) State how the result of part (b) compares with the actual ground-state energy.
A proton has the wave function (Capital_Psi)(x) = Ae^(-x/L) with total energy equal to one-seventh its potential energy. What is the potential energy (in eV) of the particle if the wave function satisfies Schrodinger's equation? Here L = 3.80 nm.
The normalized solution to the Schrodinger equation for a particular potential is ψ = 0 for x <0, and Ψ(x)=(2/a^{3/2}) x exp(-ax) for x>=0. What is the probability of finding a particle at this potential between x = a - 0.027a and x = a + 0.027a? a) 4,7%b)4,1%c)1,5%d)2,9%e)2,0%
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning