Physics: for Science.. With Modern. -Update (Looseleaf)
Physics: for Science.. With Modern. -Update (Looseleaf)
9th Edition
ISBN: 9781305864566
Author: SERWAY
Publisher: CENGAGE L
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 5, Problem 15P

Two forces, F 1 = ( 6.00 i ^ 4.00 j ^ ) N and F 2 = ( 3.00 i ^ + 7.00 j ^ ) N , act on a particle of mass 2.00 kg that is initially at rest at coordinates (−2.00 m, + 4.00 m). (a) What are the components of the particle’s velocity at t = 10.0 s? (b) In what direction is the particle moving at t = 10.0 s? (c) What displacement does the particle undergo during the first 10.0 s? (d) What are the coordinates of the particle at t = 10.0 s?

(a)

Expert Solution
Check Mark
To determine

To determine: The components of the particle’s velocity at t=10.0sec .

Answer to Problem 15P

Answer: The x components of the particle’s velocity at t=10.0sec is 45m/s and the y component of particle’s velocity at t=10s is 15m/s .

Explanation of Solution

Explanation:

Given information:

Two forces F1=(6.00i^4.00j^)N and F2=(3.00i^+7.00j^)N , act on a particle of mass 2.00kg that is initially at rest at coordinates (2.00m, +4.00m) .

Formula to calculate net force acts on a particle is,

Fnet=F1+F2

  • Fnet is the net force acting on a particle.

Formula to calculate acceleration of a particle is,

a=Fnetm

  • a is the acceleration of the particle.
  • m is the mass of the particle.

Substitute F1+F2 for Fnet in above equation.

a=F1+F2m

Substitute (6.00i^4.00j^)N for F1 , (3.00i^+7.00j^)N for F2 and 2.00kg for m to find a .

(b)

Expert Solution
Check Mark
To determine

To determine: The direction of the motion of the particle at t=10.0sec .

Answer to Problem 15P

Answer: The direction of the particle’s motion at t=10.0sec is 162° counterclockwise from the +x axis.

Explanation of Solution

Explanation:

Given information:

Two forces F1=(6.00i^4.00j^)N and F2=(3.00i^+7.00j^)N , act on a particle of mass 2.00kg that is initially at rest at coordinates (2.00m, +4.00m) .

Formula to calculate the direction of the moving particle is,

tanθ=(vyvx)

Substitute 15m/s for vy and 45m/s for vx to calculate θ .

tanθ=(15m/s45m/s)θ162°

Conclusion:

Therefore, the direction of particle’s motion at t=10.0sec is 162° counterclockwise from the +x axis.

(c)

Expert Solution
Check Mark
To determine

To determine: The displacement of the particle during 10sec .

Answer to Problem 15P

Answer: The displacement of the particle during 10sec is (225i^+75j^)m .

Explanation of Solution

Explanation:

Given information:

Two forces F1=(6.00i^4.00j^)N and F2=(3.00i^+7.00j^)N , act on a particle of mass 2.00kg that is initially at rest at coordinates (2.00m, +4.00m) .

Formula to calculate the displacement of the particle is,

s=vit+12at2

Substitute 0m/s for vi , (4.5i^+1.5j^)m/s2 for a and 10.0s for t to find s .

s=0×t+12(4.5i^+1.5j^)m/s2(10.0s)2=(255i^+75j^)m

Conclusion:

Therefore, the displacement of the particle during 10sec is (255i^+75j^)m .

(d)

Expert Solution
Check Mark
To determine

To determine: The coordinates of the particle at t=10.0sec .

Answer to Problem 15P

Answer: The coordinates of the particle at t=10.0sec is (227i^+79j^)m .

Explanation of Solution

Explanation:

Given information:

Two forces F1=(6.00i^4.00j^)N and F2=(3.00i^+7.00j^)N , act on a particle of mass 2.00kg that is initially at rest at coordinates (2.00m, +4.00m) .

The initial position of the particle is (2i^+4j^)m .

The final coordinates of the particle at t=10.0s is,

Final coordinates =(255i^+75j^)m+(2i^+4j^)m=(227i^+79j^)m

Conclusion:

Therefore, the coordinates of the particle at t=10.0sec is (227i^+79j^)m

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Two forces, F1 = (6.10î + 4.30ĵ) N and F2 = (3.40î + 7.65ĵ) N, act on a particle of mass 2.20 kg that is initially at rest at coordinates (+2.05 m, −4.50 m).   (c) What displacement does the particle undergo during the first 10.7 s? (answer in m)
Two forces, F1 = (6.10î + 4.30ĵ) N and F2 = (3.40î + 7.65ĵ) N, act on a particle of mass 2.20 kg that is initially at rest at coordinates (+2.05 m, −4.50 m). (d) What are the coordinates of the particle at t = 10.7 s? x=_________m y=__________m
A particle of mass 1.05 kg is subject to a force that is always pointed towards the East but whose magnitude changes linearly with time t. The magnitude of the force is given as F = 4t, and has units of newtons. Let the x-axis point towards the East. Determine the change in x-coordinate in meters of the particle Δx between t = 0 and t = 2.4 if the initial velocity is 17.5 m/s, and pointed in the same direction as the force.

Chapter 5 Solutions

Physics: for Science.. With Modern. -Update (Looseleaf)

Ch. 5 - Prob. 4OQCh. 5 - Prob. 5OQCh. 5 - The manager of a department store is pushing...Ch. 5 - Two objects are connected by a string that passes...Ch. 5 - Prob. 8OQCh. 5 - A truck loaded with sand accelerates along a...Ch. 5 - A large crate of mass m is place on the flatbed of...Ch. 5 - If an object is in equilibrium, which of the...Ch. 5 - A crate remains stationary after it has been...Ch. 5 - An object of mass m moves with acceleration a down...Ch. 5 - Prob. 1CQCh. 5 - Your hands are wet, and the restroom towel...Ch. 5 - In the motion picture It Happened One Night...Ch. 5 - If a car is traveling due westward with a constant...Ch. 5 - A passenger sitting in the rear of a bus claims...Ch. 5 - A child tosses a ball straight up. She says that...Ch. 5 - A person holds a ball in her hand. (a) Identify...Ch. 5 - Prob. 8CQCh. 5 - Prob. 9CQCh. 5 - Twenty people participate in a tug-of-war. The two...Ch. 5 - Prob. 11CQCh. 5 - Prob. 12CQCh. 5 - A weightlifter stands on a bathroom scale. He...Ch. 5 - Prob. 14CQCh. 5 - Suppose you are driving a classic car. Why should...Ch. 5 - Prob. 16CQCh. 5 - Describe two examples in which the force of...Ch. 5 - The mayor of a city reprimands some city employees...Ch. 5 - Give reasons for the answers to each of the...Ch. 5 - Prob. 20CQCh. 5 - Identify actionreaction pairs in the following...Ch. 5 - Prob. 22CQCh. 5 - Prob. 23CQCh. 5 - A certain orthodontist uses a wire brace to align...Ch. 5 - If a man weighs 900 N on the Earth, what would he...Ch. 5 - A 3.00-kg object undergoes an acceleration given...Ch. 5 - Prob. 4PCh. 5 - Prob. 5PCh. 5 - The average speed of a nitrogen molecule in air is...Ch. 5 - Prob. 7PCh. 5 - Prob. 8PCh. 5 - Review. The gravitational force exerted on a...Ch. 5 - Review. The gravitational force exerted on a...Ch. 5 - Review. An electron of mass 9. 11 1031 kg has an...Ch. 5 - Prob. 12PCh. 5 - One or more external forces, large enough to be...Ch. 5 - A brick of mass M has been placed on a rubber...Ch. 5 - Two forces, F1=(6.00i4.00j)N and...Ch. 5 - Prob. 16PCh. 5 - Prob. 17PCh. 5 - Prob. 18PCh. 5 - Prob. 19PCh. 5 - You stand on the seat of a chair and then hop off....Ch. 5 - Prob. 21PCh. 5 - Review. Three forces acting on an object are given...Ch. 5 - Prob. 23PCh. 5 - Prob. 24PCh. 5 - Review. Figure P5.15 shows a worker poling a boata...Ch. 5 - An iron bolt of mass 65.0 g hangs from a string...Ch. 5 - Prob. 27PCh. 5 - The systems shown in Figure P5.28 are in...Ch. 5 - Prob. 29PCh. 5 - A block slides down a frictionless plane having an...Ch. 5 - The distance between two telephone poles is 50.0...Ch. 5 - A 3.00-kg object is moving in a plane, with its x...Ch. 5 - A bag of cement weighing 325 N hangs in...Ch. 5 - A bag of cement whose weight is Fg hangs in...Ch. 5 - Prob. 35PCh. 5 - Prob. 36PCh. 5 - An object of mass m = 1.00 kg is observed to have...Ch. 5 - Prob. 38PCh. 5 - Prob. 39PCh. 5 - An object of mass m1 = 5.00 kg placed on a...Ch. 5 - Prob. 41PCh. 5 - Two objects are connected by a light string that...Ch. 5 - Prob. 43PCh. 5 - Prob. 44PCh. 5 - In the system shown in Figure P5.23, a horizontal...Ch. 5 - An object of mass m1 hangs from a string that...Ch. 5 - A block is given an initial velocity of 5.00 m/s...Ch. 5 - A car is stuck in the mud. A tow truck pulls on...Ch. 5 - Prob. 49PCh. 5 - Prob. 50PCh. 5 - In Example 5.8, we investigated the apparent...Ch. 5 - Consider a large truck carrying a heavy load, such...Ch. 5 - Prob. 53PCh. 5 - Prob. 54PCh. 5 - A 25.0-kg block is initially at rest on a...Ch. 5 - Why is the following situation impassible? Your...Ch. 5 - Prob. 57PCh. 5 - Before 1960m people believed that the maximum...Ch. 5 - Prob. 59PCh. 5 - A woman at an airport is towing her 20.0-kg...Ch. 5 - Review. A 3.00-kg block starts from rest at the...Ch. 5 - The person in Figure P5.30 weighs 170 lb. As seen...Ch. 5 - A 9.00-kg hanging object is connected by a light,...Ch. 5 - Three objects are connected on a table as shown in...Ch. 5 - Prob. 65PCh. 5 - A block of mass 3.00 kg is pushed up against a...Ch. 5 - Prob. 67PCh. 5 - Prob. 68PCh. 5 - Prob. 69PCh. 5 - A 5.00-kg block is placed on top of a 10.0-kg...Ch. 5 - Prob. 71PCh. 5 - A black aluminum glider floats on a film of air...Ch. 5 - Prob. 73APCh. 5 - Why is the following situation impossible? A book...Ch. 5 - Prob. 75APCh. 5 - A 1.00-kg glider on a horizontal air track is...Ch. 5 - Prob. 77APCh. 5 - Prob. 78APCh. 5 - Two blocks of masses m1 and m2, are placed on a...Ch. 5 - Prob. 80APCh. 5 - An inventive child named Nick wants to reach an...Ch. 5 - Prob. 82APCh. 5 - Prob. 83APCh. 5 - An aluminum block of mass m1 = 2.00 kg and a...Ch. 5 - Prob. 85APCh. 5 - Prob. 86APCh. 5 - Prob. 87APCh. 5 - Prob. 88APCh. 5 - A crate of weight Fg is pushed by a force P on a...Ch. 5 - Prob. 90APCh. 5 - A flat cushion of mass m is released from rest at...Ch. 5 - In Figure P5.46, the pulleys and pulleys the cord...Ch. 5 - What horizontal force must be applied to a large...Ch. 5 - Prob. 94APCh. 5 - A car accelerates down a hill (Fig. P5.95), going...Ch. 5 - Prob. 96CPCh. 5 - Prob. 97CPCh. 5 - Initially, the system of objects shown in Figure...Ch. 5 - A block of mass 2.20 kg is accelerated across a...Ch. 5 - Prob. 100CPCh. 5 - Prob. 101CPCh. 5 - In Figure P5.55, the incline has mass M and is...Ch. 5 - Prob. 103CPCh. 5 - Prob. 104CP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY