
Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 5, Problem 26P
The tension at which a fishing line snaps is commonly called the line’s “strength.” What minimum strength is needed for a line that is to stop a salmon of weight 85 N in 11 cm if the fish is initially drifting at 2.8 m/s? Assume a constant deceleration.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Box 100kg
static friction 0.5
kinetic friction 0.3
gravity 9.81
Task 2: Coulomb's law and electric fields
1. In this unit, you were learning about different yet similar laws of physics -
Newton's universal law of gravitation and Coulomb's law of electrostatics.
Describe one similarity and one difference for these two laws.
2. Refer to the following two images for the questions that follow.
Figure 1
Figure 2
a. Refer to Figure 1:
i. State whether the source charge is positively or negatively charged.
ii. Figure 1 contains arrows that are outwardly pointing. By convention, state how
the directions of field lines are detected.
b. Comparing Figure 1 and Figure 2, you will notice Figure 2 does not have any
arrowheads. Observe the sign of charges for each source charge, (in Figure 2)
and state the direction the arrowheads should be pointing to make it accurate.
3. Examine the charge distribution in the following diagram.
N
- 4.0 x 10-5 C
24cm
91
24cm
+2.0 x 10-5 C
92
2
- 4.0 x 10-5 C
a. Determine the net force charge acting at q1 (+2.0 × 10-5 C), caused…
Task 3: Electric potential energy and
electric potential
1. Examine the charge distribution shown.
-4
Ci
Sphere 1 has a charge of +3.0 × 10 C';
sphere 2 has a charge of -3.0 × 10°
and sphere 3 has a charge of +3.0 × 10-4 C
. Assume that Coulomb's constant, (k) is equal
to 9.0 × 109 Nm²
C2
Show all your work when completing each of
these questions.
4.24 m.
N
3.00 m
4.24 m
3.00 m
3.00 m
93
92
91
a. Determine the total electric potential
energy for the charge distribution.
b. Determine the total electric potential at
point Z.
Chapter 5 Solutions
Fundamentals of Physics Extended
Ch. 5 - Figure 5-19 gives the free-body diagram for four...Ch. 5 - Two horizontal forces, F1=(3N)i (4N)jandF2=(1N)i...Ch. 5 - In Fig. 5-21, forces F1 and F2 are applied to a...Ch. 5 - At time t = 0, constant F begins to act on a rock...Ch. 5 - Figure 5-22 shows overhead views of four...Ch. 5 - Figure 5-23 shows the same breadbox in four...Ch. 5 - July 17, 1981, Kansas City: The newly opened Hyatt...Ch. 5 - Figure 5-25 gives three graphs of velocity...Ch. 5 - Figure 5-26 shows a train of four blocks being...Ch. 5 - Figure 5-27 shows three blocks being pushed across...
Ch. 5 - A vertical force F is applied to a block of mass m...Ch. 5 - Figure 5-28 shows four choices for the direction...Ch. 5 - Only two horizontal forces act on a 3.0 kg body...Ch. 5 - Two horizontal forces act on a 2.0 kg chopping...Ch. 5 - If the 1 kg standard body has an acceleration of...Ch. 5 - While two forces act on it, a particle is to move...Ch. 5 - GO Three astronauts, propelled by jet backpacks,...Ch. 5 - In a two-dimensional tug-of-war, Alex, Betty, and...Ch. 5 - SSM There are two forces on the 2.00 kg box in the...Ch. 5 - A 2.00 kg object is subjected to three forces that...Ch. 5 - A 0.340 kg particle moves in an xy plane according...Ch. 5 - GO A 0.150 kg particle moves along an x axis...Ch. 5 - A 2.0 kg particle moves along an x axis, being...Ch. 5 - GO Two horizontal forces F1 and F2 act on a 4.0 kg...Ch. 5 - Figure 5-33 shows an arrangement in which four...Ch. 5 - A block with a weight of 3.0 N is at rest on a...Ch. 5 - SSM a An 11.0 kg salami is supported by a cord...Ch. 5 - Some insects can walk below a thin rod such as a...Ch. 5 - SSM WWW In Fig. 5-36, let the mass of the block be...Ch. 5 - In April 1974, John Massis of Belgium managed to...Ch. 5 - SSM A 500 kg rocket sled can be accelerated at a...Ch. 5 - A car traveling at 53 km/h hits a bridge abutment....Ch. 5 - A constant horizontal force Fa pushes a 2.00 kg...Ch. 5 - A customer sits in an amusement park ride in which...Ch. 5 - Tarzan, who weighs 820 N, swings from a cliff at...Ch. 5 - 24 There are two horizontal forces on the 2.0 kg...Ch. 5 - Sunjamming. A sun yacht is a spacecraft with a...Ch. 5 - The tension at which a fishing line snaps is...Ch. 5 - SSM An electron with a speed of 1.2 107 m/s moves...Ch. 5 - A car that weighs 1.30 104 N is initially moving...Ch. 5 - A firefighter who weighs 712 N slides down a...Ch. 5 - The high-speed winds around a tornado can drive...Ch. 5 - SSM WWW A block is projected up a frictionless...Ch. 5 - Figure 5-39 shows an overhead view of a 0.0250 kg...Ch. 5 - An elevator cab and its load have a combined mass...Ch. 5 - GO In Fig. 5-40, a crate of mass m = 100 kg is...Ch. 5 - The velocity of a 3.00 kg particle is given by...Ch. 5 - Holding on to a towrope moving parallel to a...Ch. 5 - A 40 kg girl and an 8.4 kg sled are on the...Ch. 5 - A 40 kg skier skis directly down a frictionless...Ch. 5 - ILW A sphere of mass 3.0 104 kg is suspended from...Ch. 5 - GO A dated box of dates, of mass 5.00 kg, is sent...Ch. 5 - Using a rope that will snap if the tension in it...Ch. 5 - GO In earlier days, horses pulled barges down...Ch. 5 - SSM In Fig. 5-43, a chain consisting of five...Ch. 5 - A lamp hangs vertically from a cord in a de...Ch. 5 - An elevator cab that weighs 27.8 kN moves upward....Ch. 5 - An elevator cab is pulled upward by a cable. The...Ch. 5 - GO The Zacchini family was renowned for their...Ch. 5 - GO In Fig. 5-44, elevator cabs A and B are...Ch. 5 - In Fig. 5-45, a block of mass m = 5.00 kg is...Ch. 5 - GO Fig. 5-46, three ballot boxes are connected by...Ch. 5 - GO Figure 5-47 shows two blocks connected by a...Ch. 5 - An 85 kg man lowers himself to the ground from a...Ch. 5 - In Fig. 5-48, three connected blocks are pulled to...Ch. 5 - GO Figure 5-49 shows four penguins that are being...Ch. 5 - SSM ILW WWW Two blocks are in contact on a...Ch. 5 - GO In Fig. 5-51a, a constant horizontal force Fa...Ch. 5 - ILW A block of mass m1 = 3.70 kg on a frictionless...Ch. 5 - Figure 5-53 shows a man sitting in a bosuns chair...Ch. 5 - SSM A 10 kg monkey climbs up a massless rope that...Ch. 5 - Figure 5-45 shows a 5.00 kg block being pulled...Ch. 5 - SSM ILW A hot-air balloon of mass M is descending...Ch. 5 - In shot putting, many athletes elect to launch the...Ch. 5 - GO Figure 5-55 gives, as a function of time t, the...Ch. 5 - GO Figure 5-56 shows a box of mass m2 = 1.0 kg on...Ch. 5 - GO Figure 5-47 shows Atwoods machine, in which two...Ch. 5 - GO Figure 5-57 shows a section of a cable-car...Ch. 5 - Figure 5-58 shows three blocks attached by cords...Ch. 5 - A shot putter launches a 7.260 kg shot by pushing...Ch. 5 - In Fig. 5-59, 4.0 kg block A and 6.0 kg block B...Ch. 5 - An 80 kg man drops to a concrete patio from a...Ch. 5 - SSM Figure 5-60 shows a box of dirty money mass m1...Ch. 5 - Three forces act on a particle that moves with...Ch. 5 - SSM In Fig. 5-61, a tin of antioxidants m1 = 1.0...Ch. 5 - The only two forces acting on a body have...Ch. 5 - Figure 5-62 is an overhead view of a 12 kg tire...Ch. 5 - A block of mass M is pulled along a horizontal...Ch. 5 - SSM A worker drags a crate across a factory floor...Ch. 5 - In Fig. 5-64, a force F of magnitude 12 N is...Ch. 5 - A certain particle has a weight of 22 N at a point...Ch. 5 - An 80 kg person is parachuting and experiencing a...Ch. 5 - A spaceship lifts off vertically from the Moon,...Ch. 5 - In the overhead view of Fig. 5-65, five forces...Ch. 5 - SSM A certain force gives an object of mass m1 an...Ch. 5 - Prob. 84PCh. 5 - A 52 kg circus performer is to slide down a rope...Ch. 5 - Compute the weight of a 75 kg space ranger a on...Ch. 5 - An object is hung from a spring balance attached...Ch. 5 - Imagine a landing craft approaching the surface of...Ch. 5 - A 1400 kg jet engine is fastened to the fuselage...Ch. 5 - An interstellar ship has a mass of 1.20 106 kg...Ch. 5 - SSM A motorcycle and 60.0 kg rider accelerate at...Ch. 5 - Prob. 92PCh. 5 - SSM Figure 5-66a shows a mobile hanging from a...Ch. 5 - For sport, a 12 kg armadillo runs onto a large...Ch. 5 - Suppose that in Fig. 5-12, the masses of the...Ch. 5 - A nucleus that captures a stray neutron must bring...Ch. 5 - If the 1 kg standard body is accelerated by only...
Additional Science Textbook Solutions
Find more solutions based on key concepts
How can 1H NMR distinguish between the compounds in each of the following pairs?
Organic Chemistry (8th Edition)
A mixed culture of Escherichia coli and Penicillium chrysogenum is inoculated onto the following culture media....
Microbiology: An Introduction
11.57 Draw the cis and trans isomers for each of the following: (11.6)
a. 2-pentene
b. 3-hexene
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Q1. What is the empirical formula of a compound with the molecular formula
Chemistry: A Molecular Approach (4th Edition)
Match each of the following items with all the terms it applies to:
Human Physiology: An Integrated Approach (8th Edition)
Some organizations are starting to envision a sustainable societyone in which each generation inherits sufficie...
Campbell Essential Biology (7th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- I need help with question 15 first picture has link to labarrow_forwardTask 1: Universal gravitation and gravitational fields Answer both parts with a complete solution. A complete solution means that you have provided the Given, Required, Analysis, Solution and Statement. Be sure that you communicate your final answer with appropriate units and the correct number of significant figures. 1. The earth has a mass of 5.98 × 1024 kg and the moon has a mass of 7.35 × 1022 kg. The distance from the centre of the moon to the centre of the earth is 3.84 × 109 m. A rocket with a total mass of 1,200 kg is 3.0 × 108 m from the centre of the earth and directly in between the earth and the moon. Find the net gravitational force on the rocket from the earth and moon. 2. A 500 kg satellite experiences a gravitational force of 3,000 N, while moving in a circular orbit around the earth. a. Determine the radius of the circular orbit. b. Determine the speed of the satellite. c. Determine the period of the orbit.arrow_forwardQuestions 1. Suppose the force acting on an object and the velocity of the object are in opposite directions. Then the work done by the force is 2. In order to do work, a system must have 3. As a skier speeds up while gliding down a slope, _energy is converted into. energy. 4. A weight lifter raises a 90 kg barbell 1.9 m. What is the potential energy gain of the barbell? 3arrow_forward
- 20.) Another observer is standing at the train station as Train B passes by at a distance of d= 6,000 m away. (See the diagram). At that instant, what is the minimum (nonzero) distance, L, that the trains could be separated by in order to have constructive interference at the location of the observer? Assume Train A blows also blows its horn emitting a frequency of 400 Hz. Give an answer in meters. (A) 101 (D) 67.9 (B) 87.6 (E) 76.5 (C) 45.2 --L 4 B Darrow_forwardProblem Four. A bullet with mass m = 20.0 g bullet is fired into a block with mass M = 7.00 kg which is attached to a spring. The bullet is moving with a speed of 350 m/s at the moment of collision. After the collision, the block (with bullet embedded) compresses the spring to a maximum displacement of 48.0 cm. 8.) Find the spring constant in N/m. (A) 90.2 (B) 30.3 (C) 55.3 (D) 41.7 (E) 14.3 9.) After the spring is compressed, the system undergoes simple harmonic motion. Find the magnitude of the velocity when the block (with embedded bullet) is a third of the way through a full amplitude. Give an answer in cm/s. (A) 76 (B) 54 (C) 32 (D) 16 (E) 94arrow_forwardProblem Two. A diatomic ideal gas (with translation and rotation degrees of freedom) is taken around the process shown. 3.) Find the work done on the gas (in J) after one cycle ABCA. (A)-30 (B)-10 (C)-20 (D) 20 P(pa) 40 (E) 30 4.) By what factor does the internal energy at point A compare to the internal energy at point C? (A) 10 (B) 6.0 (C) 24 (D) 12 (E) 8.0 5.) Find the heat transfer (in J) during the process A-B. 10 10 (A)-70 (B) 15 (C) 70 (D)-15 (E)-56 6.) Find the heat transfer (in J) during the (A)-225 (B) 135 process B-C. (C) -135 (D) 225 (E)-70 C B A V (m³) 3arrow_forward
- Problem Five. An object simple harmonic motion as described by the figure. 10.) Find the angular frequency in rad/s. x (cm) 4.00 NA 2.00 (A) 0.393 (B) 0.430 (C) 0.803 (D) 0.234 (E) 0.157 0.00 4 8 11.) Find the maximum acceleration in cm/s². -2.00 (A) 0.186 (B) 0.428 (C) 0.617 (D) 0.397 (E) 0.987 -4.00 1(s) 12 16 12.) Find the acceleration (in cm/s²) when t = 6.80 s. (A) 0.159 (B) 0.732 (C) 0.550 13.) Find the time (in s) when the position is a quarter of the amplitude. (A) 7.56 (B) 0.56 (C) 1.18 (D) 0.297 (E) 0.452 (D) 3.36 (E) 4.52 14.) If the graph represents a pendulum with a length of 1.40 m that is located on a space station, find the gravitational acceleration on the space station (in m/s²). (A) 0.182 (B) 0.499 (C) 0.357 (D) 0.973 (E) 0.216 15.) If the graph represents a spring-block system with a spring constant that is 11.6 N/m, find the mass of the block in kg. (A) 75.2 (B) 68.7 (C) 82.5 (D) 24.7 (E) 54.6arrow_forwardProblem Three. The surface of the Sun is approximately 5,850 K. The average surface temperature of Mars is approximately 210 K. 7.) Find the entropy change of the system (in units of J/K) when 7,000 J of energy is transferred by heat from the Sun to Mars. (B) 32.1 (A) 25.4 (C) 24.2 (D) 19.1 (E) 21.8 5001arrow_forwardProblem One. There are 4.0 moles of an ideal gas contained at 273 K. A piston is used to compress the gas into a new volume which is a quarter of the old volume in an isothermal process. 1.) Find the work done on the gas. Give an answer in kJ. (A)-6.3 (D) 6.3 (B) 13 (E)-13 (C) 8.7 2.) If it requires 84.0 kJ to achieve the process described above, find the efficiency percent of this process. (A) 93 (B) 80 (C) 19 (D) 15 (E) 53arrow_forward
- Problem Six. Two trains on separate tracks move away from each other. Train A has a speed of 156 km/h; train B, a speed of 72.0 km/h. Train B blows its horn, emitting a frequency of 400 Hz. 16.) Find the frequency (in Hz) heard by the engineer on Train A. (A) 536 (B) 476 (C) 543 (D) 226 (E) 330 17.) If the train lowers the volume of its horn by 6.0 decibels, by what has the intensity decreased by? (A) 0.25 (B) 0.33 (C) 0.51 (D) 0.62 (E) 0.76 18.) If an observer hears the train horn and then moves to a location where it's one fourth as loud, by what factor did the observer's distance from the train change by? (A) √2 (B) 2 (C) 4 (D) √2 (E) 6 19.) If the temperature of the air is doubled, find what factor the speed of the sound in air changes by. (A) 4 (B) 1/4 (C) 2 (D) √√2 (E)arrow_forward7. A skier starts from rest at the top of each of the hills shown in the figure below. On which hill will the skier have the highest speed at the bottom if we ignore friction: (a), (b), (c), (d), or (e)? (a) (b) (c) (d) 8. Answer Conceptual Question 7 (above) assuming a small amount of friction.arrow_forwardI need help with part C using info provided above part a.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning

Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill

Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Newton's Second Law of Motion: F = ma; Author: Professor Dave explains;https://www.youtube.com/watch?v=xzA6IBWUEDE;License: Standard YouTube License, CC-BY