
Applied Physics (11th Edition)
11th Edition
ISBN: 9780134159386
Author: Dale Ewen, Neill Schurter, Erik Gundersen
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 5, Problem 9RP
A rock of a mass 13.0 kg is dropped from a cliff. Find its weight.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
A small ball of mass M is attached to the end of a uniform rod of equal mass M and length L that is pivoted at the top (see figure below).
P
Pivot
M
i
(a) Determine the tension in the rod at the pivot. (Use the following as necessary: M, g, L, and y.)
F
pivot =
2.M.g
(b) Determine the tension in the rod at the point P when the system is stationary. (Use the following as necessary: M, g, L, and y.)
Fp
=
M.g.
·(1+ ž)
(c) Calculate the period of oscillation for small displacements from equilibrium. (Use the following as necessary: M, g, L, and y.)
T= 4.
Π
3
L
2.
g
(d) Determine this period (in s) for L = 2.08 m.
1.93
Your response differs from the correct answer by more than 10%. Double check your calculations. s
(e) What If? What is the percentage difference between the period of this system compared to the period of a simple pendulum in which a ball of mass M is pivoted at the end of a massless rod of length L?
simple x 100% 33.4
Tsystem T
simple
× %
An electron with kinetic energy K is traveling along the
positive x-axis, which is along the axis of a cathode-ray tube,
as shown in the figure. There is an electric field
E = 15.0 × 104 N/C pointed in the positive y-direction
between the deflection plates, which are 0.0600 m long and
are separated by 0.0200 m.
Determine the minimum kinetic energy Kmin the electron can
have and still avoid colliding with one of the plates.
Kmin
=
12
Ē
L
d
x
J
A small 2.85 g plastic ball that has a charge q = 1.75 C is
suspended by a string that has a length L = 1.00 m in a
uniform electric field, as shown in the figure.
If the ball is in equilibrium when the string makes a
0 = 9.80° angle with the vertical, what is the electric field
strength E?
| L
E =
N/C
|
Ꮎ
q
Ē
Chapter 5 Solutions
Applied Physics (11th Edition)
Ch. 5.2 - Find the total force necessary to give each mass...Ch. 5.2 - Find the total force necessary to give each mass...Ch. 5.2 - Find the total force necessary to give each mass...Ch. 5.2 - Find the total force necessary to give each mass...Ch. 5.2 - Find the total force necessary to give each mass...Ch. 5.2 - Find the total force necessary to give each mass...Ch. 5.2 - Find the total force necessary to give each mass...Ch. 5.2 - Find the total force necessary to give each mass...Ch. 5.2 - Find the acceleration of each mass with the given...Ch. 5.2 - Find the acceleration of each mass with the given...
Ch. 5.2 - Find the acceleration of each mass with the given...Ch. 5.2 - Find the acceleration of each mass with the given...Ch. 5.2 - Find the acceleration of each mass with the given...Ch. 5.2 - Find the acceleration of each mass with the given...Ch. 5.2 - Find the acceleration of each mass with the given...Ch. 5.2 - Find the acceleration of each mass with the given...Ch. 5.2 - Find the acceleration of each mass with the given...Ch. 5.2 - Find the acceleration produced by a total force of...Ch. 5.2 - Find the total force necessary to give an...Ch. 5.2 - Find the total force necessary to give a rocket of...Ch. 5.2 - A forklift has a mass of 975 kg. What force must...Ch. 5.2 - A power wheelbarrow has a mass of 432 kg. What...Ch. 5.2 - What is the rate of deceleration of a 1400-kg SUV...Ch. 5.2 - An earthmover slows from 15.0 km/h to 3.00 km/h in...Ch. 5.2 - Find the total force necessary to give a 140-kg...Ch. 5.2 - Find the acceleration produced by a total force of...Ch. 5.2 - Find the mass of an object with acceleration 15.0...Ch. 5.2 - An automobile has a mass of 100 slugs. The...Ch. 5.2 - Find the acceleration produced by a force of 6.75 ...Ch. 5.2 - An astronaut has a mass of 80.0 kg. His space suit...Ch. 5.2 - A discus thrower exerts a force of 140 N on the...Ch. 5.2 - A scooter and rider together have a mass of 275...Ch. 5.2 - A pickup truck with mass of 1230 kg moving at 105...Ch. 5.3 - Find the weight for each mass. 1. m = 30. 0kgCh. 5.3 - Find the weight for each mass. 2. m = 60.0kgCh. 5.3 - Find the weight for mass. 3. m = 10.0 slugsCh. 5.3 - Find the weight for each mass. 4. m = 9.00 kgCh. 5.3 - Find the mass for each weight. 5. Fw = 17.0 NCh. 5.3 - Find the mass for each weight. 6. Fm = 21.0 lbCh. 5.3 - Find the mass for each weight. 7. Fw = 12,000 NCh. 5.3 - Find the mass for each weight. 8. Fw = 25, 000 NCh. 5.3 - Find the mass for the each weight. 9. Fw = 6.7 ...Ch. 5.3 - Find the mass for each weight. 10. Fw = 5.5 106...Ch. 5.3 - Find the weight of an 1150-kg automobile.Ch. 5.3 - Find the weight of an 81.5-slug automobile.Ch. 5.3 - Find the mass of a 2750-lb automobile.Ch. 5.3 - What is the mass of a 20,000-N truck?Ch. 5.3 - What is the mass of a 7500-N trailer?Ch. 5.3 - Find the mass of an 11,500-N automobile.Ch. 5.3 - Find the weight of a 1350-kg automobile (a) on the...Ch. 5.3 - Maria weighs 115 lb on the earth. What are her (a)...Ch. 5.3 - Johns mass is 65.0 kg on the earth. What are his...Ch. 5.3 - What is your weight in newtons and in pounds?Ch. 5.3 - What is your mass in kilograms and in slugs?Ch. 5.3 - What are your U.S. mass and weight on the moon?Ch. 5.3 - What are your metric mass and weight on the moon?Ch. 5.3 - Johns mass is 65.0 kg on the earth. What are his...Ch. 5.3 - Maria weighs 115 lb on the earth. What are her U...Ch. 5.3 - John's mass is 65.0 kg on the earth. What are his...Ch. 5.3 - What are your metric mass and weight on Jupiter,...Ch. 5.3 - What are your metric mass and weight on Mars,...Ch. 5.3 - An automobile transmission weighs 995 N. What is...Ch. 5.3 - A power wheelbarrow weighs 210 N. What is its...Ch. 5.4 - A cart on wheels weighs 2400 N. The coefficient of...Ch. 5.4 - A wooden crate weighs 780 lb. What force is needed...Ch. 5.4 - A piano weighs 4700 N. What force is needed to...Ch. 5.4 - A force of 850 N is needed to keep the piano in...Ch. 5.4 - A dog sled weighing 750 lb is pulled over level...Ch. 5.4 - A horizontal conveyor belt system has a...Ch. 5.4 - A tow truck can deliver 2500 lb of pulling force....Ch. 5.4 - A snowmobile is pulling a large sled across a...Ch. 5.4 - An automobile weighs 12,000 N and has a...Ch. 5.4 - A light truck weighs 14,000 N with a coefficient...Ch. 5.4 - A stake truck weighs 20,000 N with a coefficient...Ch. 5.4 - An alloy block is placed on a smooth composite...Ch. 5.4 - If a 20.0-N casting is placed on the block in...Ch. 5.4 - Rubber tires and wet blacktop have a coefficient...Ch. 5.4 - The coefficient of friction in Problem 15 is 0.700...Ch. 5.5 - Find the net force including its direction when...Ch. 5.5 - Find the net force including its direction when...Ch. 5.5 - Find the net force including its direction when...Ch. 5.5 - Find the net force including its direction when...Ch. 5.5 - Find the net force including its direction when...Ch. 5.5 - Find the net force including its direction when...Ch. 5.5 - Find the acceleration of an automobile of mass 100...Ch. 5.5 - Find the acceleration of an automobile of mass...Ch. 5.5 - A truck of mass 13,100 kg is acted upon by a...Ch. 5.5 - A speedboat of mass 30.0 slugs has a 300-lb force...Ch. 5.5 - A truck with a mass of 14,000 kg is pushed with a...Ch. 5.5 - A trailer has a mass of 5000 kg. It is pulled by a...Ch. 5.5 - A refrigeration unit on a job site must be slid...Ch. 5.5 - A light truck of 2000-kg mass has to be pushed...Ch. 5 - Force a. is a vector quantity. b. may be different...Ch. 5 - The metric weight of a 10-lb bag of sugar is...Ch. 5 - Mass and weight a. are the same. b. are different....Ch. 5 - According to Newtons second law, the law of...Ch. 5 - Friction a. always acts parallel to the surface of...Ch. 5 - Cite three examples of forces acting without...Ch. 5 - Using your own words, state Newton's first law,...Ch. 5 - Distinguish between velocity and acceleration.Ch. 5 - When the same force is applied to two different...Ch. 5 - Is 3 lb heavier than 10 N?Ch. 5 - Explain how life would be easier or more difficult...Ch. 5 - Explain how the weight of an astronaut is...Ch. 5 - Explain the difference between action and reaction...Ch. 5 - State Newton's third law of motion, the law of...Ch. 5 - A crate of mass 6.00 kg is moved by a force of...Ch. 5 - An 825-N force is required to pedal a bike with an...Ch. 5 - A block of mass 0.89 slug moves with a force of...Ch. 5 - What is the force necessary for a 2400-kg truck to...Ch. 5 - Two movers push a piano across a frictionless...Ch. 5 - A 340-N box has a frictional force of 57 N. Find...Ch. 5 - A truck pulls a trailer with a frictional force of...Ch. 5 - A steel box is slid along a steel surface. It has...Ch. 5 - A rock of a mass 13.0 kg is dropped from a cliff....Ch. 5 - A projectile has a mass of 0 37 slug. Find its...Ch. 5 - What force is required to produce an acceleration...Ch. 5 - Find the total force necessary to give a 280-kg...Ch. 5 - A force of 175 N is needed to keep a 640 -N...Ch. 5 - A crated garden tractor weighs 375 N. What force...Ch. 5 - Find the acceleration of a forklift of mass 1400...Ch. 5 - What is the weight of a 375-kg air compressor?Ch. 5 - What is the mass of a 405-N welder?Ch. 5 - What is the mass of a 12.0-N hammer?Ch. 5 - Engineers at Boeing developing specs for their...Ch. 5 - The Apollo spacecrafts were launched toward the...Ch. 5 - Kirsten's mass is 373 slugs. Being the physics fan...Ch. 5 - A motorcycle racer travelling at 145 km/h loses...Ch. 5 - The motorcycle and rider are sliding with the same...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Choose the best answer to each of the following. Explain your reasoning. a photograph of a cluster of galaxies ...
Cosmic Perspective Fundamentals
48. A copper block is removed from a 300°C oven and dropped into 1.00 kg of water at 20.0°C. The water quickly ...
College Physics: A Strategic Approach (3rd Edition)
Which type of cartilage is most plentiful in the adult body?
Anatomy & Physiology (6th Edition)
All of the following processes are involved in the carbon cycle except: a. photosynthesis b. cell respiration c...
Human Biology: Concepts and Current Issues (8th Edition)
Fill in the blanks: The nose is to the mouth. The ankle is to the knee. The ring finger is to the inde...
Human Anatomy & Physiology (2nd Edition)
The bioremediation process shown in the photograph is used to remove benzene and other hydrocarbons from soil c...
Microbiology: An Introduction
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A less than youthful 80.6 kg physics professor decides to run the 26.2 mile (42.195 km) Los Angeles Marathon. During his months of training, he realizes that one important component in running a successful marathon is carbo-loading, the consumption of a sufficient quantity of carbohydrates prior to the race that the body can store as glycogen to burn during the race. The typical energy requirement for runners is 1 kcal/km per kilogram of body weight, and each mole of oxygen intake allows for the release of 120 kcal of energy by oxidizing (burning) glycogen. (a) If the professor finishes the marathon in 5:15:00 h, what is the professor's oxygen intake rate, in liters per minute, during the race if he metabolizes all of the carbo-loaded glycogen during the race and the ambient temperature is 21.5°C? 2.02 × Read the problem statement again carefully. Is the air at standard temperature and pressure during the marathon? How would this affect the volume of 1 mol of oxygen? L/min (b) The…arrow_forwardYou are using a microscope to view a dust particle suspended in a drop of water on a microscope slide. As water molecules bombard the particle, it "jitters" about in a random motion (Brownian motion). The particle's average kinetic energy is the same as 3 that of a molecule in an ideal gas (K = The particle (assumed to be spherical) has a density of 350 kg/m³ in water at 23°C. 2 BT). (a) If the particle has a diameter d, determine an expression for its rms speed in terms of the diameter d. (Enter your answer as a multiple of d−3/2. Assume v is in m/s and d-3/2 is in m−3/2. Do not include units in your answer.) rms V. = rms rms Obtain an expression for v by equating the expression for the kinetic energy of the particle in terms of v obtain an expression for the mass of the particle in terms of its diameter. d-3/2 rms to the expression for the average kinetic energy of a molecule. Knowing the density of the particle and assuming it is a sphere, we can (b) Assuming the particle moves at a…arrow_forwardYou are watching a new bridge being built near your house. You notice during the construction that two concrete spans of the bridge of total length L; = 270 m are placed end to end so that no room is allowed for expansion (figure (a)). In the opening storyline for the thermodynamics chapter, we talked about buckling sidewalks. The same thing will happen with spans on bridges if allowance is not made for expansion (figure (b)). You want to warn the construction crew about this dangerous situation, so you calculate the height y to which the spans will rise when they buckle in response to a temperature increase of AT = 19.0°C. a b T T+AT y = Ider Enter a number. made by one span, with its thermally expanded length as the hypotenuse.arrow_forward
- An open cylinder of air has a radius of 38.0 cm and a height of 50.0 cm, as shown in figure (a). 50.0 cm Ah The air pressure is 1.00 atm and the temperature is 13.5°C. A 25.0 kg piston is then lowered onto the cylinder, forming an airtight seal, as shown in figure (b). The air inside is compressed until the piston reaches equilibrium (mechanical and thermal), and at this point the piston is a height h; from the bottom of the cylinder. Lastly, a 27.5 kg dog steps onto the piston, and the air in the cylinder again compresses, as show in figure (c). After reaching equilibrium, the air inside is again at 13.5°C, and the height of the piston decreases a distance Ah as shown. (a) What is the distance Ah (in mm) that the piston moves when the dog is on it? mm (b) To what temperature (in °C) should the gas be warmed to raise the piston and the dog back to h;? °Carrow_forwardTwo horizontal wires are joined end to end, each with a diameter of 2.000 mm. The two joined wires are connected to fixed points a total distance of 4.00000 m apart. When both wires are at a temperature of 43.0°C, each wire has an unstretched length of 2.00000 m, and the tension in each is negligible. The first wire is made of steel and extends from x = -2.00000 m to x = 0, and the second is made of brass and extends from x = 0 to x = 2.00000 m. The temperature of both wires is then lowered to 18.0°C, and the wires stay joined together as they cool. The steel wire is composed of an alloy that has an average coefficient of linear expansion of 1.10 x 10-5 (°C) -1 and a Young's modulus of 2.00 x 1011 N/m². The brass wire is composed of an alloy that has an average coefficient of linear expansion of 1.90 x 10-5 (°C)¹ and a Young's modulus of 9.10 x 10 10 N/m². (Due to the nature of this problem, do not use rounded intermediate values-including answers submitted in WebAssign-in your…arrow_forward! Required information The radius of the Moon is 1.737 Mm and the distance between Earth and the Moon is 384.5 Mm. The intensity of the moonlight incident on her eye is 0.0220 W/m². What is the intensity incident on her retina if the diameter of her pupil is 6.54 mm and the diameter of her eye is 1.94 cm? W/m²arrow_forward
- Required information An object is placed 20.0 cm from a converging lens with focal length 15.0 cm (see the figure, not drawn to scale). A concave mirror with focal length 10.0 cm is located 76.5 cm to the right of the lens. Light goes through the lens, reflects from the mirror, and passes through the lens again, forming a final image. Converging lens Object Concave mirror 15.0 cm -20.0 cm- 10.0 cm d cm d = 76.5. What is the location of the final image? cm to the left of the lensarrow_forward! Required information A man requires reading glasses with +2.15-D refractive power to read a book held 40.0 cm away with a relaxed eye. Assume the glasses are 1.90 cm from his eyes. His uncorrected near point is 1.00 m. If one of the lenses is the one for distance vision, what should the refractive power of the other lens (for close-up vision) in his bifocals be to give him clear vision from 25.0 cm to infinity? 2.98 Darrow_forward! Required information Assume that the magnifier is held close to the eye. Use the standard near point of 25.0 cm to find the angular magnification. An insect that is 4.10 mm long is placed 10.3 cm from a simple magnifier with a focal length of 13.0 cm. What is the angular magnification?arrow_forward
- 2arrow_forward3arrow_forwardImagine you are out for a stroll on a sunny day when you encounter a lake. Unpolarized light from the sun is reflected off the lake into your eyes. However, you notice when you put on your vertically polarized sunglasses, the light reflected off the lake no longer reaches your eyes. What is the angle between the unpolarized light and the surface of the water, in degrees, measured from the horizontal? You may assume the index of refraction of air is nair=1 and the index of refraction of water is nwater=1.33 . Round your answer to three significant figures. Just enter the number, nothing else.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill

University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Newton's First Law of Motion: Mass and Inertia; Author: Professor Dave explains;https://www.youtube.com/watch?v=1XSyyjcEHo0;License: Standard YouTube License, CC-BY