
An automobile accident causes both the driver and passenger front airbags to deploy. (a) If the vehicle was traveling at a speed of 88.6 km/h and is now at rest, find the change in momentum for both the 68.4-kg adult driver and the 34.2-kg child passenger. (b) The adult took 0.564 s and the child took 0.260 s to come to rest. Find the force that the airbag exerted on each individual. Explain why airbags tend to be dangerous for children

Want to see the full answer?
Check out a sample textbook solution
Chapter 6 Solutions
Applied Physics (11th Edition)
Additional Science Textbook Solutions
Laboratory Experiments in Microbiology (12th Edition) (What's New in Microbiology)
Genetic Analysis: An Integrated Approach (3rd Edition)
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Campbell Biology in Focus (2nd Edition)
Anatomy & Physiology (6th Edition)
Campbell Essential Biology with Physiology (5th Edition)
- Constants A glass flask whose volume is 1000.00 cm³ at 0.0°C is completely filled with mercury at this temperature. When flask and mercury are warmed to 54.5 °C, 8.75 cm³ of mercury overflow. Part A If the coefficient of volume expansion of mercury is 18.0 × 10-5 K-1, compute the coefficient of volume expansion of the glass. ΕΠΙ ΑΣΦ ? ẞglass II = (C°)-1arrow_forwardAn insulated beaker with negligible mass contains liquid water with a mass of 0.285 kg and a temperature of 79.9 °C. Part A How much ice at a temperature of -21.4 °C must be dropped into the water so that the final temperature of the system will be 28.0°C? . Take the specific heat of liquid water to be 4190 J/kg K, the specific heat of ice to be 2100 J/kg K, and the heat of fusion for water to be 3.34×105 J/kg. ▸ View Available Hint(s) Mice = ΕΕ ΑΣΦ ? kgarrow_forwardPart A Calculate the change in entropy when 1.00 kg of water at 100 °C is vaporized and converted to steam at 100 °C. Assume that the heat of vaporization of water is 2256 × 103 J/kg. - ΕΠΙ ΑΣΦ VAΣ ? AS = Submit Request Answer Part B J/K Calculate the change in entropy when 1.00 kg of ice is melted at 0°C. Assume that the heat of fusion of water is L₁ = 3.34 × 105J/kg. VG ΑΣΦ AS = Submit Request Answer Part C Is the change entropy greater for melting or for vaporization? the change entropy greater for melting the change entropy greater for vaporization Submit Request Answer J/Karrow_forward
- Constants A 10.8 L gas tank containing 3.20 moles of ideal He gas at 25.0 °C is placed inside a completely evacuated insulated bell jar of volume 36.0 L . A small hole in the tank allows the He to leak out into the jar until the gas reaches a final equilibrium state with no more leakage. Part A What is the change in entropy of this system due to the leaking of the gas? ΕΠΙ ΑΣΦ AS = Submit Request Answer Part B Is the process reversible or irreversible? Please Choose Submit Request Answer Provide Feedback ? J/K Next >arrow_forwardTwo moles of carbon monoxide (CO) start at a pressure of 1.3 atm and a volume of 29 liters. The gas is then compressed adiabatically to 1/3 this volume. Assume that the gas may be treated as ideal. Part A What is the change in the internal energy of the gas? Express your answer using two significant figures. ΤΟ ΑΣΦ AU = Submit Request Answer Part B Does the internal energy increase or decrease? internal energy increases internal energy decreases Submit Request Answer Part C Does the temperature of the gas increase or decrease during this process? temperature of the gas increases temperature of the gas decreases Submit Request Answerarrow_forwardPart carrow_forward
- A large cylindrical tank contains 0.850 m³ of nitrogen gas at 22.0 °C and 8.50×103 Pa (absolute pressure). The tank has a tight-fitting piston that allows the volume to be changed. Part A What will be the pressure if the volume is decreased to 0.470 m³ and the temperature is increased to 157 °C? ΕΠΙ ΑΣΦ ? p = Submit Request Answer Paarrow_forwardTwo billiard balls, A and B, of equal mass (150 g) move at right angles and meet at the origin of an xy coordinate system. Initially, ball A is moving along the y axis at +2.0 m/s, and ball B is moving to the right along the x axis with speed +3.7 m/s. Both balls collide and after the collision, the second ball, B, moved along the positive y axis. (a) What is the final direction of ball A? (b) What are the speeds of the two balls after the collision? (c) Considering the balls to be an isolated system, what is the net impulsive force resulting from the collision if the impact lasted for 0.4 sec? (d) Does your answer to part c make sense, explain? +y VB=3.7 m/s B V 'B B VA-2 m/s A +xarrow_forwardIn order to convert a tough split in bowling, it is necessary to strike the pin a glancing blow as shown. Assume that the bowling ball, initially traveling at 13.0 m/s, has five times the mass of a pin and that the pin goes off at 75° from the original direction of the ball. Calculate the speed (a) of the pin and (b) of the ball just after collision, and (c) calculate the angle, 0, through which the ball was deflected. Assume the collision is elastic and ignore any spin of the ball. Marrow_forward
- A bullet of mass m moving with velocity v strikes and becomes embedded at the edge of a cylinder of mass M and radius Ro, as shown. The cylinder, initially at rest, begins to rotate about its symmetry axis, which remains fixed in position. Assume no frictional torque. (a) What is the total moment of inertia after the collision? (b) What is the angular velocity of the cylinder after this collision? (c) Is kinetic energy conserved (ignore the motion of the cylinder's center of mass)? (d) Assume that the cylinder rotated for t sec before coming to a stop, what is the angular acceleration of its motion? (e) What is the toque resulting from the force of impact which caused the rotation? Icyl = 0.5 M Ro² 120 m Marrow_forwardCan u please help me in giving me an idea how to run a small experiment at home using Goldberg's machines to pop a balloon? I need to include 6 qdifferent machines and two energy transfers during conducting the experiment. Thanks so mucharrow_forwardAnswer the assignment 1 question and show step-by-step solution. This is from Chapter 10 from the book, "The Essential Cosmic Perspective" 8th edition by Bennett, Donahue, Schneider, Voit. I provided some helpful notes to help with the solution.arrow_forward
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





