GEN, ORG & BIOL CHEM: CUSTOM SSC
GEN, ORG & BIOL CHEM: CUSTOM SSC
5th Edition
ISBN: 9781307274448
Author: SMITH
Publisher: MCG CUSTOM
Question
Book Icon
Chapter 7, Problem 7.13P

(a)

Interpretation Introduction

Interpretation:

To prove that T(ZT)ρ=ρ(Zρ)T and apply it to Van der Waals equation

Concept Introduction:

Using, P=ρZRT to prove T(ZT)ρ=ρ(Zρ)T

By Joule Thompson inversion curve, (ZT)P=0

Then applying it to General equation which is given as,

P=RTVba(T)(V+b)×(V+σb)

(a)

Expert Solution
Check Mark

Answer to Problem 7.13P

  T(ZT)ρ=ρ(Zρ)T Hence Proved

Z=11ξqξ (A)

ξ=112q (B)

Pr=ZξTrΩ (C)

For a given Tr, we can find q and then use equation (B) to find ξ

The Equation (A) we can find Z and then Pr with equation (C)

Explanation of Solution

(xy)z=(xy)w+(xw)y(wy)z

(ZT)p=(ZT)ρ+(Zp)T(ρT)P

We get,(ZT)ρ=(ZT)P(Zρ)p(ρT)P

Now, P=ρZRT i.e. ρ=PZRT

(ρT)P=PR{1( ZT)2[Z+T( Z T)P]}

Substituting (ZT)P=0 in each of the two preceding equations reduces them to:

  (ZT)ρ=(Zρ)T(ρT)P

  (ρT)P=PZRT2=ρT

Combing these two equations yields:

  T(ZT)ρ=ρ(Zρ)T Hence Proved

The general equation is as follows,

P=RTVba(T)(V+b)×(V+σb)

With Van der Waals parameters becomes:

P=RTVbaV2

Multiply the above equation by V/RT,

PVRT=VVbaVRT

substitute Z = PV/RT and V=1/ρ,

Z=11bρaρRT

Assume, q=abRT and define ξ=bρ, we get,

Z=11ξqξ (A)

Differentiating the above equation, we get

(ZT)ρ=(ZT)ξ=ξdqdT

By q=ψa(Tr)ΩTr with α(Tr)=1 for the van der waals equation, q=ψΩTr We get,

dqdT=ψΩ(1Tr2)dTrdT=ψΩ1Tr2Tc=ψΩ1TTr=qT

Then,

(ZT)ρ=(ξ)(qT)=qξT

In addition,

(Zρ)T=b(Zξ)T=b(1ξ)2qb

Substitute for the two partial derivatives in the boxed equation:

TqξT=bρ(1ξ)2qbρ or

qξ=ξ(1ξ)2qξ

hence,

ξ=112q (B)

Now, b=ΩRTCPC

Pc=ΩRTcb

(I)

P=ZρRT

(II)

Division of (II) by (I) gives

Pr=PPC=ZρbTΩTc

Pr=ZξTrΩ (C)

For a given Tr, we can find q and then use equation (B) to find ξ

The Equation (A) we can find Z and then Pr with equation (C)

(b)

Interpretation Introduction

Interpretation:

To prove that T(ZT)ρ=ρ(Zρ)T and apply it to Redlich Kwong equation

Concept Introduction:

Using, P=ρZRT to prove T(ZT)ρ=ρ(Zρ)T

By Joule Thompson inversion curve, (ZT)P=0

Then applying it to General equation which is given as,

P=RTVba(T)(V+b)×(V+σb)

(b)

Expert Solution
Check Mark

Answer to Problem 7.13P

  T(ZT)ρ=ρ(Zρ)T Hence Proved

Z=11ξqξ1+ξ (A)

q=(1+ξ1ξ)2(12.5+1.5ξ) (B)

Pr=ZξTrΩ (C)

For a given Tr, we can find q and then use equation (B) to find ξ

The Equation (A) we can find Z and then Pr with equation (C)

Explanation of Solution

(xy)z=(xy)w+(xw)y(wy)z

(ZT)p=(ZT)ρ+(Zp)T(ρT)P

We get,(ZT)ρ=(ZT)P(Zρ)p(ρT)P

Now, P=ρZRT i.e. ρ=PZRT

(ρT)P=PR{1( ZT)2[Z+T( Z T)P]}

Substituting (ZT)P=0 in each of the two preceding equations reduces them to:

  (ZT)ρ=(Zρ)T(ρT)P

  (ρT)P=PZRT2=ρT

Combing these two equations yields:

  T(ZT)ρ=ρ(Zρ)T Hence Proved

The general equation is as follows,

P=RTVba(T)(V+b)×(V+b)

With Redlich Kwong parameters becomes:

P=RTVbaV(V+b)

Multiply the above equation by V/RT,

PVRT=VVbaRT(V+b)

substitute Z = PV/RT and V=1/ρ,

Z=11bρabρbRT(1+bρ)

Assume, q=abRT and define ξ=bρ, we get,

Z=11ξqξ1+ξ (A)

By q=ψa(Tr)ΩTr with α(Tr)=Tr0.5 for the Redlich/Kwong equation, q=ψΩTr1.5 .

We get,

dqdT=1.5qTand (ZT)ρ=1.5qξT(1+ξ)

(Zρ)T=b(1ξ)2bq(1+ξ)2

Substitution into the above equation, we get

q=(1+ξ1ξ)2(12.5+1.5ξ) (B)

Now, b=ΩRTCPC

Pc=ΩRTcb

(I)

P=ZρRT

(II)

Division of (II) by (I) gives

Pr=PPC=ZρbTΩTc

Pr=ZξTrΩ (C)

For a given Tr, we can find q and then use equation (B) to find ξ

The Equation (A) we can find Z and then Pr with equation (C)

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Knowledge Booster
Background pattern image
Recommended textbooks for you
Text book image
Introduction to Chemical Engineering Thermodynami...
Chemical Engineering
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:McGraw-Hill Education
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemical Engineering
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Text book image
Elements of Chemical Reaction Engineering (5th Ed...
Chemical Engineering
ISBN:9780133887518
Author:H. Scott Fogler
Publisher:Prentice Hall
Text book image
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:9781119285915
Author:Seborg
Publisher:WILEY
Text book image
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:9781285061238
Author:Lokensgard, Erik
Publisher:Delmar Cengage Learning
Text book image
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:9780072848236
Author:Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:McGraw-Hill Companies, The