Materials Science And Engineering Properties
Materials Science And Engineering Properties
1st Edition
ISBN: 9781111988609
Author: Charles Gilmore
Publisher: Cengage Learning
Question
Book Icon
Chapter 7, Problem 7.6P

(a)

To determine

All of the constants in the equation fir tensile yield strength as function of solid solution composition.

(a)

Expert Solution
Check Mark

Answer to Problem 7.6P

The constants in the equation fir tensile yield strength as function of solid solution composition is 8×109 N/m2af1/2 .

Explanation of Solution

Concept used:

Draw the diagram for yield strength of iron as a function of the atom fraction of carbon to the one-half power as shown below:

  Materials Science And Engineering Properties, Chapter 7, Problem 7.6P

Write the expression for tensile strength of solid solution strengthened alloy.

  σy=σ0+kstcs1/2 …… (1)

Here, σy is the tensile strength of solid solution strengthened alloy, σ0 is the tensile yield stress at zero concentration of solid-solution atoms, cs is the solute chemical composition in terms of atom fraction and kst is constant.

Calculation:

Refer to figure 1; the value of σ0 at zero concentration of atom fraction of carbon is 7×107 N/m2 .

Refer to figure 1; at atom fraction of carbon as 10×103 af1/2 the corresponding yield stress is 15×107 N/m2 .

Substitute 15×107 N/m2 for σy , 7×107 N/m2 for σ0 and 10×103 af1/2 for cs1/2 in equation (1).

  15×107 N/m2=7×107 N/m2+kst(10× 10 3  af 1/2)kst=8× 107 N/m2( 10× 10 3  af 1/2 )kst=8×109 N/m2af1/2

Conclusion:

Thus, the constants in the equation fir tensile yield strength as function of solid solution composition is 8×109 N/m2af1/2 .

(b)

To determine

The yield strength of iron-carbon alloy.

(b)

Expert Solution
Check Mark

Answer to Problem 7.6P

The yield strength of iron-carbon alloyis 33.53×107N/m2 .

Explanation of Solution

Substitute 8×109 N/m2af1/2 for kst , 7×107 N/m2 for σ0 and 0.0011 for cs in equation (1).

  σy=7×107 N/m2+(8× 109  N/m2 af 1/2)(0.0011 af)1/2=7×107 N/m2+26.53×107 N/m2=33.53×107N/m2

Conclusion:

Thus, the yield strength of iron-carbon alloyis 33.53×107N/m2 .

(c)

To determine

Comment if fraction of carbon increased thenthe strength to be given by an extension of the line in the figure or not.

(c)

Expert Solution
Check Mark

Explanation of Solution

If the concentration of solid solution atoms becomes large then the precipitation of atoms starts to form. As mentioned if concentration is increased from 0.0011 to 0.0015 af of carbon the precipitates of iron carbides starts to form in alloy.

The strength dependence of precipitates is different than the strength dependence of solid solution. Therefore, it is not possible to give extension of line in figure.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
All the following statements are true for ceramics except __________________.   Question 26 options:   Electrical conductivity of ceramics is generally lower than metals.   Most ceramics are lighter than metals but heavier than polymers.   The melting point of ceramics is lower than most metals.   Thermal expansion of ceramics are less than for metals.
Suppose you would like to introduce an interstitial or large substitutional atom   into the crystal near a dislocation. Would the atom fit more easily above or below the dislocation line shown in Figure? Explain.
128) With which test is the fluidity of metals measured?A. hardnessB. ViscosityC. CharpyD. SpiralE. Jominy   137) Which is not one of the alloying elements used in steel production? a) Molybdenumb) Aluminumc) Manganesed) Chromiume) Vanadium

Chapter 7 Solutions

Materials Science And Engineering Properties