EP WEBASSIGN FOR SEEDS/BACKMAN'S FOUNDA
14th Edition
ISBN: 9780357113325
Author: Seeds
Publisher: CENGAGE CO
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 8, Problem 2LTL
To determine
The height and atmospheric layer does the red and yellow color belongs.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Tutorial
Star A has a temperature of 5,000 K. How much energy per second (in J/s/m2) does it radiate from a square meter of its surface?
If the temperature of Star A decreases by a factor of 2, the energy will decrease by a factor of
Star B has a temperature that is 5 times higher than Star A. How much more energy per second (compared to Star A) does it radiate from a square meter of its surface?
Part 1 of 4
The energy of a star is related to its temperature by
E = GT4
where σ = 5.67 x 10-8 J/s/m2/K4.
Part 2 of 4
To determine how much energy Star A is radiating, we just plug in the temperature to solve for EA.
EA =
J/s/m²
Submit Skip (you cannot come back)
If the color of the sun's photosphere's maximum intensity light is green, is this the color we normally observe for the photosphere? Why or why not?
(I would assume it is not, but I do not know why...)
Tutorial
Star A has a temperature of 5,000 K and Star B has a temperature of 6,000 K. At what wavelengths (in nm) will each of these star's intensity be at its maximum?
If the temperatures of the stars increase, the wavelength of maximum intensity.
What is the temperature (in K) of a star that appears most intense at a wavelength of 829 nm?
Part 1 of 4
Wien's Law tells us how the temperature of a star determines the wavelength of maximum intensity or at what wavelength the star appears brightest.
2.90 x 106
TK
If the temperature is in kelvin (K) then A is in nanometers (nm).
Anm
^A =
AB =
=
Part 2 of 4
To determine the wavelengths of maximum intensity for the two stars:
2.90 x 106
2.90 x 106
K
nm
nm
Chapter 8 Solutions
EP WEBASSIGN FOR SEEDS/BACKMAN'S FOUNDA
Ch. 8 - Prob. 1RQCh. 8 - Prob. 2RQCh. 8 - Prob. 3RQCh. 8 - Prob. 4RQCh. 8 - Prob. 5RQCh. 8 - Prob. 6RQCh. 8 - What evidence can you give that granulation is...Ch. 8 - Prob. 8RQCh. 8 - Prob. 9RQCh. 8 - Prob. 10RQ
Ch. 8 - Prob. 11RQCh. 8 - Prob. 12RQCh. 8 - Prob. 13RQCh. 8 - Prob. 14RQCh. 8 - Energy can be transported by convection,...Ch. 8 - Prob. 16RQCh. 8 - Prob. 17RQCh. 8 - Prob. 18RQCh. 8 - Prob. 19RQCh. 8 - Meridional is derived from meridian. Look up the...Ch. 8 - Prob. 21RQCh. 8 - Prob. 22RQCh. 8 - How can solar flares affect Earth?Ch. 8 - Prob. 24RQCh. 8 - Why does nuclear fusion require high temperatures...Ch. 8 - Prob. 26RQCh. 8 - Four protons are combined in the proton-proton...Ch. 8 - Give an example of a charged subatomic particle...Ch. 8 - Prob. 29RQCh. 8 - Prob. 30RQCh. 8 - Prob. 31RQCh. 8 - Prob. 32RQCh. 8 - Prob. 33RQCh. 8 - The radius of the Sun is 0.7 million km. What...Ch. 8 - Prob. 2PCh. 8 - Prob. 3PCh. 8 - What is the angular diameter of a star the same...Ch. 8 - If a sunspot has a temperature of 4200 K and the...Ch. 8 - How many watts of radiation does a 1-meter-square...Ch. 8 - If a sunspot has a temperature of 4200 K and the...Ch. 8 - Prob. 8PCh. 8 - Prob. 9PCh. 8 - Prob. 10PCh. 8 - Prob. 11PCh. 8 - Prob. 12PCh. 8 - Prob. 13PCh. 8 - Prob. 14PCh. 8 - The United States consumes about 2.5 1019 J of...Ch. 8 - Prob. 16PCh. 8 - Prob. 1SOPCh. 8 - Prob. 2SOPCh. 8 - Whenever there is a total solar eclipse, you can...Ch. 8 - Prob. 2LTLCh. 8 - Prob. 3LTLCh. 8 - Prob. 4LTLCh. 8 - The two images here show two solar phenomena. What...Ch. 8 - Prob. 6LTL
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Make a sketch of the Sun’s atmosphere showing the locations of the photosphere, chromosphere, and corona. What is the approximate temperature of each of these regions?arrow_forwardThe radius of the Sun is 0.7 million km. What percentage of the radius is taken up by the chromosphere? (Hint: Refer to Figure 8-1.)arrow_forwardFrom the information in Figure 15.21, estimate the speed with which the particles in the CME in parts (c) and (d) are moving away from the Sun. Figure 15.21 Flare and Coronal Mass Ejection. This sequence of four images shows the evolution over time of a giant eruption on the Sun. (a) The event began at the location of a sunspot group, and (b) a flare is seen in far-ultraviolet light. (c) Fourteen hours later, a CME is seen blasting out into space. (d) Three hours later, this CME has expanded to form a giant cloud of particles escaping from the Sun and is beginning the journey out into the solar system. The white circle in (c) and (d) shows the diameter of the solar photosphere. The larger dark area shows where light from the Sun has been blocked out by a specially designed instrument to make it possible to see the faint emission from the corona. (credit a, b, c, d: modification of work by SOHO/EIT, SOHO/LASCO, SOHO/MDI (ESA & NASA))arrow_forward
- The radius of the Sun is 0.7 million km. Examine Figure 7-3 to estimate the thickness of the chromosphere. What fraction of the Sun’s radius is taken up by the chromosphere?arrow_forwardfrom d to f please thank youarrow_forwardIf each square cm of the sun's surface radiates energy at the rate of 1.5x 103 cal/s/cm? and Stefan's constant is 5.7 x 108 J-s/m? K-4, calculate the temperature of the sun's surface in degree centigrade.arrow_forward
- If the temperature at the centre of the sun is 15,000,000 K and the temperature of the photosphere is 5,800 K, what is the ratio of the temperature at the centre of the Sun compared to the photosphere? Express your final answer in the fully factorised form x : 1, where x is a number that you should determine to an appropriate number of significant figures and write it using scientific notation.arrow_forwardCalculate the total amount of radiative energy per second intercepted by Mars from the Sun using the flux of radiation from the Sun at Mars' orbital radius. Flux of radiation from the Sun at Mars' orbital radius is 597 W m-2. The luminosity of the Sun Ls = 3.8×1026 W. Mars orbits at a distance of 2.25×1011 m (1.5 AU) from the Sun. Note: Consider carefully the cross-sectional area Mars presents to the outwards flow of radiative energy when answering this question.arrow_forwardYou record the spectrum of a distant star using a telescope on the ground on Earth. Upon analysing the spectrum, you discover absorption lines spaced at intervals typical of oxygen atoms. Which of the following are possible interpretations of this evidence? Select all that apply. The width of the spectral lines gives the diameter of the star The star is likely orbited by habitable planets with breathable atmospheres. The height of the spectral lines above the star's general blackbody spectral curve tells us how much oxygen is in the star The atmosphere of Earth contains oxygen The red or blueshift of the set of lines can tell us the speed of the star's motion toward or away from usarrow_forward
- 1) What is thermal equilibrium? Is the Sun in thermal equilibrium? How do we know this? 2) In order to maintain thermal equilibrium, how much energy must the Sun generate every second?arrow_forwardWhat is the approximate temperature of the sun at its chromosphere ?arrow_forwardGiven that the solar spectrum corresponds to a temperature of 5800 K and peaks at a wavelength of 500 nm, use Wien's law to determine the wavelength corresponding to the peak of the black-body curve in the solar photosphere of the Sun, where the temperature is 104 Karrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxHorizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning