Operations Research : Applications and Algorithms
Operations Research : Applications and Algorithms
4th Edition
ISBN: 9780534380588
Author: Wayne L. Winston
Publisher: Brooks Cole
bartleby

Concept explainers

Students have asked these similar questions
Solve the following exercise using jupyter notebook for Python, to find the objective function, variables, constraint matrix and print the graph with the optimal solution. A farm specializes in the production of a special cattle feed, which is a mixture of corn and soybeans. The nutritional composition of these ingredients and their costs are as follows: - Corn contains 0.09 g of protein and 0.02 g of fiber per gram, with a cost of.$0.30 per gram.- Soybeans contain 0.60 g of protein and 0.06 g of fiber per gram, at a cost of $0.90 per gram.0.90 per gram. The dietary needs of the specialty food require a minimum of 30% protein and a maximum of 5% fiber. The farm wishes to determine the optimum ratios of corn and soybeans to produce a feed with minimal costs while maintaining nutritional constraints and ensuring that a minimum of 800 grams of feed is used daily. Restrictions 1. The total amount of feed should be at least 800 grams per day.2. The feed should contain at least 30% protein…
Using Python/PuLP solve   At the beginning of month 1, Finco has $400 in cash.  At the beginning of months 1, 2, 3, and 4, Finco receives certain revenues, after which it pays bills (see Table 2 below).  Any money left over may be invested for one month at the interest rate of 0.1% per month; for two months at 0.5% per month; for three months at 1% per month; or for four months at 2% per month.  Use linear programming to determine an investment strategy that maximizes cash on hand at the beginning of month 5.  Formulate an LP to maximize Finco’s profit.   Table 2 Month Revenues ($) Bills ($) 1 400 600 2 800 500 3 300 500 4 300 250
You are given some tasks of size xK, yK and zK respectively and there are at most 9 tasks each. Determine the best that you could achieve if you are to fill up a hole of size SK, for the following values of x, y, z and S, by maximizing the space used (up to S), i.e. minimizing the used space, if any. Show how many tasks of size x, how many tasks of size y and how many tasks of size z are used in each of the three cases. (g) Now if we relax the requirement so that there are no upper limits on the number of tasks for each type, determine the maximal space usage and the task mix. (h) If we tighten the requirement so that there are still at most 9 tasks of each size, but we also require that each type of tasks must be used at least once, determine maximal space usage and the task mix. Case 1 2 3 X 22 26 28 y 33 43 65 50 77 74 S 488 556 777 You could complete the following table. Fill in the number of tasks inside the brackets and the corresponding maximal usage. (At most 9 tasks each (g)…