Question
Chapter 9.3, Problem 9.4CE
To determine
Energy in eV of the photon absorbed when an electron jumps up from the
n = 1
orbit to
n = 3
orbit of a hydrogen atom.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solutionExpert Solution & Answer

Expert Solution & Answer

View this solution and millions of others when you join today!
See solution Check out a sample textbook solution
Students have asked these similar questions
a. Is a 4p → 4s transition allowed in sodium? If so, what is its wavelength? If not, why not?b. Is a 3d → 4s transition allowed in sodium? If so, what is its wavelength? If not, why not?
Consider a hydrogen atom and a singly ionized helium atom. Which atom has the lower ground state energy? (a) Hydrogen (b) Helium (c) The ground state energy is the same for both. Why?
An electron in a hydrogen atom makes a transition from the n=1 state to the n=3 state
(1eV= 1.6 x10^-19 J and h = 6.63 x 10^-34 J s= 4.136 x 10^-15 Ev/hz c =3.0 x10^8 m/s)
what is the energy of the photon absorbed in transition and what is the frequency of the absorbed photon energy?

An Introduction to Physical Science
14th Edition
ISBN: 9781305079137
Author: James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher: Cengage Learning
Not helpful? See similar books

An Introduction to Physical Science
Atomic Physics. 9.4CE
Get 24/7 homework help!
8+ million solutions
Get access to millions of step-by-step textbook and homework solutions
Support from experts
Send experts your homework questions or start a chat with a tutor
Essay support
Check for plagiarism and create citations in seconds
Solve math equations
Get instant explanations to difficult math equations
Students love us.
Students love us.
Chapter 9 Solutions
An Introduction to Physical Science
Ch. 9.1 - Prob. 1PQCh. 9.1 - Prob. 2PQCh. 9.2 - Prob. 1PQCh. 9.2 - Prob. 2PQCh. 9.2 - Prob. 9.1CECh. 9.3 - Prob. 1PQCh. 9.3 - When does a hydrogen atom emit or absorb radiant...Ch. 9.3 - Prob. 9.2CECh. 9.3 - Prob. 9.3CECh. 9.3 - Prob. 9.4CE
Ch. 9.4 - Prob. 1PQCh. 9.4 - Prob. 2PQCh. 9.5 - Prob. 1PQCh. 9.5 - Prob. 2PQCh. 9.6 - Prob. 1PQCh. 9.6 - Prob. 2PQCh. 9.6 - Prob. 9.5CECh. 9.7 - Prob. 1PQCh. 9.7 - Prob. 2PQCh. 9 - Prob. AMCh. 9 - Prob. BMCh. 9 - Prob. CMCh. 9 - Prob. DMCh. 9 - Prob. EMCh. 9 - Prob. FMCh. 9 - Prob. GMCh. 9 - Prob. HMCh. 9 - Prob. IMCh. 9 - Prob. JMCh. 9 - Prob. KMCh. 9 - Prob. LMCh. 9 - Prob. MMCh. 9 - Prob. NMCh. 9 - Prob. OMCh. 9 - Prob. PMCh. 9 - Prob. QMCh. 9 - Prob. 1MCCh. 9 - Prob. 2MCCh. 9 - Prob. 3MCCh. 9 - Prob. 4MCCh. 9 - Prob. 5MCCh. 9 - Prob. 6MCCh. 9 - Prob. 7MCCh. 9 - Prob. 8MCCh. 9 - Prob. 9MCCh. 9 - Prob. 10MCCh. 9 - Prob. 11MCCh. 9 - Prob. 12MCCh. 9 - Prob. 13MCCh. 9 - Prob. 14MCCh. 9 - Prob. 1FIBCh. 9 - Prob. 2FIBCh. 9 - Prob. 3FIBCh. 9 - Prob. 4FIBCh. 9 - Prob. 5FIBCh. 9 - Prob. 6FIBCh. 9 - Prob. 7FIBCh. 9 - Prob. 8FIBCh. 9 - Prob. 9FIBCh. 9 - Prob. 10FIBCh. 9 - Prob. 11FIBCh. 9 - Prob. 12FIBCh. 9 - Prob. 1SACh. 9 - Prob. 2SACh. 9 - Prob. 3SACh. 9 - Prob. 4SACh. 9 - Prob. 5SACh. 9 - Prob. 6SACh. 9 - Prob. 7SACh. 9 - Prob. 8SACh. 9 - Prob. 9SACh. 9 - Prob. 10SACh. 9 - Prob. 11SACh. 9 - Prob. 12SACh. 9 - Prob. 13SACh. 9 - Prob. 14SACh. 9 - Prob. 15SACh. 9 - Prob. 16SACh. 9 - Prob. 17SACh. 9 - Prob. 18SACh. 9 - Prob. 19SACh. 9 - Prob. 20SACh. 9 - Prob. 21SACh. 9 - Prob. 22SACh. 9 - Prob. 23SACh. 9 - Prob. 24SACh. 9 - Prob. 25SACh. 9 - Prob. 26SACh. 9 - Prob. 27SACh. 9 - Prob. 28SACh. 9 - Prob. 29SACh. 9 - Prob. 30SACh. 9 - Prob. 31SACh. 9 - Prob. 32SACh. 9 - Prob. 33SACh. 9 - Prob. 34SACh. 9 - Visualize the connection for the descriptions of...Ch. 9 - Prob. 1AYKCh. 9 - Prob. 2AYKCh. 9 - Prob. 3AYKCh. 9 - Prob. 4AYKCh. 9 - Prob. 5AYKCh. 9 - Prob. 1ECh. 9 - Prob. 2ECh. 9 - Prob. 3ECh. 9 - Prob. 4ECh. 9 - Prob. 5ECh. 9 - Prob. 6ECh. 9 - Prob. 7ECh. 9 - Prob. 8ECh. 9 - Prob. 9ECh. 9 - Prob. 10ECh. 9 - Prob. 11ECh. 9 - Prob. 12E
Knowledge Booster
Similar questions
What is the energy of the photon that, when absorbed by a hydrogen atom, could cause an electronic transition from the n = 2 state to the n = 5 state? Answer in units of eV. What energy could cause an electronic transition from the n = 5 state to the n = 8 state? Answer in units of eV.
arrow_forward
A photon with a wavelength of 410 nm has energy Ephoton = 3.0 eV. Do you expect to see a spectral line with λ = 410 nm in the emission spectrum of the atom represented by this energy-level diagram? If so, what transition or transitions will emit it? Do you expect to see a spectral line with λ = 410 nm in the absorption spectrum? If so, what transition or transitions will absorb it?
arrow_forward
Enumerate all states of the hydrogen atom corresponding to the principal quantum
number n = 2, giving the spectroscopic designation for each. Calculate the energies
of these states.
arrow_forward
Calculate the longest wavelength of the electromagnetic radiation emitted by the hydrogen atom in undergoing a transition from the n = 6 level.
arrow_forward
Consider only transitions involving the n = 1 through n = 4 energy levels for the hydrogen atom (see Figures 6.7 and 6.10).
(a) How many emission lines are possible, considering only the four quantum levels?
(b) Photons of the lowest enerrgy are emitted in a transition from the level with n = _ _ _ _ to a level with n = _ _ _ _
(c) The emission line having the shortest wavelength corresponds to a transition from the level with n = _ _ _ _ to the level with n =
arrow_forward
A) What is the least amount of energy, in electron volts, that must be given to a hydrogen atom which is initially in its ground level so that it can emit the HαHα line in the Balmer series?
Express your answer in electronvolts to three significant figures.
B) How many different possibilities of spectral-line emissions are there for this atom when the electron starts in the n = 3 level and eventually ends up in the ground level?
arrow_forward
In the operation of a helium-neon laser, why is it important that the metastable state in the helium atom closely match the energy level of a more-difficult-to- come-by metastable state in neon?
arrow_forward
What is the energy of the photon that, whenabsorbed by a hydrogen atom, could cause anelectronic transition from the n = 3 state tothe n = 5 state?Answer in units of eV.
What energy could cause an electronic transition from the n = 5 state to the n = 7state?Answer in units of eV.
arrow_forward
Consider photons incident on a hydrogen atom.
(a) A transition from the n = 4 to the n = 7 excited-state requires the absorption of a photon of what minimum energy? eV(b) A transition from the n = 1 ground state to the
n = 6 excited state requires the absorption of a photon of what minimum energy?
eV
arrow_forward
Explain the reason that metal atomic chains have quantized G, different from bulk metals by comparing with the Schematic illustration of a diffusive and ballistic conductor.
arrow_forward
Estimate the ground state energy of helium atom by taking the product of two normalized hydrogenic ground state wave functions as the trial wave function, the nuclear charge Ze being the variable parameter. Assume that the expectation value of the interelectronic repulsion term is (5/4) ZWH, WH = 13.6 eV?
arrow_forward
A hydrogen atom is excited from its ground state to the state with n= 4. (a) How much energy must be absorbed by the atom? Consider the photon energies that can be emitted by the atom as it de-excites to the ground state in the several possible ways. (b) How many different energies are possible; what are the (c) highest, (d) second highest, (e) third highest, (f) lowest, (g) second lowest, and (h) third lowest energies?
arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you

An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning

Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning

An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning

Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning