Mathematical Methods in the Physical Sciences - 3rd Edition - by Mary L. Boas - ISBN 9780471198260
Buy this textbookBuy

Mathematical Methods in the Physical Sc...
3rd Edition
Mary L. Boas
Publisher: Wiley, John & Sons, Incorporated
ISBN: 9780471198260

Solutions for Mathematical Methods in the Physical Sciences

Browse All Chapters of This Textbook

Chapter 1.14 - Accuracy Of Series ApproximationsChapter 1.15 - Some Uses Of SeriesChapter 1.16 - Miscellaneous ProblemChapter 2.4 - Terminology And NotationChapter 2.5 - Complex AlgebraChapter 2.6 - Complex Infinite SeriesChapter 2.7 - Complex Power Series; Disk Of ConvergenceChapter 2.8 - Elementary Functions Of Complex NumbersChapter 2.9 - Euler's FormulaChapter 2.10 - Power And Roots Of Complex NumberChapter 2.11 - The Exponential And Trigonometric FunctionChapter 2.12 - Hyperbolic FunctionsChapter 2.14 - Complex Roots And PowersChapter 2.15 - Inverse Trigonometric And Hyperbolic FunctionsChapter 2.16 - Some ApplicationsChapter 2.17 - Miscellaneous ProblemsChapter 3.2 - Matrices; Row ReductionChapter 3.3 - Determinants; Cramer's RuleChapter 3.4 - VectorsChapter 3.5 - Lines And PlanesChapter 3.6 - Matrix OperationsChapter 3.7 - Linear Combination, Linear Functions, Linear OperatorsChapter 3.8 - Linear Dependence And IndependenceChapter 3.9 - Special Matrices And FormulasChapter 3.10 - Linear Vector SpacesChapter 3.11 - Eigenvalues And Eigenvectors; Diagonalizing MatricesChapter 3.12 - Application Of DiagonalizationChapter 3.13 - A Brief Introduction To GroupsChapter 3.14 - General Vector SpacesChapter 3.15 - Miscellaneous ProblemChapter 4.1 - Introduction And NotationChapter 4.2 - Power Series In Two VariablesChapter 4.3 - Total DifferentialsChapter 4.4 - Approximations Using DifferentialsChapter 4.5 - Chain Rule Or Differentiating A Function Of A FunctionChapter 4.6 - Implicit DifferentiationChapter 4.7 - More Chain RuleChapter 4.8 - Application Of Partial Differentiation To Maximum And Minimum ProblemsChapter 4.9 - Maximum And Minimum Problems With Constraints; Lagrange MultipliersChapter 4.10 - Endpoint Or Boundary Point ProblemsChapter 4.11 - Change Of VariablesChapter 4.12 - Differentiation Of Integrals; Leibniz' RuleChapter 4.13 - Miscellaneous ProblemChapter 5.1 - IntroductionChapter 5.2 - Double And Triple IntegralsChapter 5.3 - Applications Of Integration; Single And Multiple IntegralsChapter 5.4 - Change Of Variables In Integrals; JacobiansChapter 5.5 - Surface IntegralsChapter 5.6 - Miscellaneous ProblemsChapter 6.3 - Triple ProductsChapter 6.4 - Differentiation Of VectorsChapter 6.6 - Directional Derivative; GradientChapter 6.7 - Some Other Expressions InvolvingChapter 6.8 - Line IntegralsChapter 6.9 - Green's Theorem In The PlaneChapter 6.10 - The Divergence And The Divergence TheoremChapter 6.11 - The Curl And Stokes' TheoremChapter 6.12 - Miscellaneous ProblemsChapter 7.2 - Simple Harmonic Motion And Wave Motion; Periodic FunctionsChapter 7.3 - Application Of Fourier SeriesChapter 7.4 - Average Value Of A FunctionChapter 7.5 - Fourier CoefficientsChapter 7.6 - Dirichlet ConditionsChapter 7.7 - Complex Form Of Fourier SeriesChapter 7.8 - Other IntervalsChapter 7.9 - Even And Odd FunctionsChapter 7.10 - An Applications To SoundChapter 7.11 - Parseval's TheoremChapter 7.12 - Fourier TransformsChapter 7.13 - Miscellaneous ProblemsChapter 8.1 - IntroductionChapter 8.2 - Separable EquationsChapter 8.3 - Linear First-order EquationsChapter 8.4 - Other Methods For First- Order EquationsChapter 8.5 - Second-order Linear Equations With Constant Coefficients And Zero Right-hand SideChapter 8.6 - Second-order Linear Equations With Constant Coefficients And Right-hand Side Not ZeroChapter 8.7 - Other Second-order EquationsChapter 8.8 - The Laplace TransformChapter 8.9 - Solution Of Differential Equations By Laplace TransformsChapter 8.10 - ConvolutionChapter 8.11 - The Dirac Delta FunctionChapter 8.12 - A Brief Introduction To Green FunctionsChapter 8.13 - Miscellaneous ProblemsChapter 9.1 - IntroductionChapter 9.2 - The Euler EquationChapter 9.3 - Using The Euler EquationChapter 9.4 - The Brachistochrone Problem; CycloidsChapter 9.5 - Several Dependent Variables; Lagrange’s EquationsChapter 9.6 - Isoperimetric ProblemsChapter 9.8 - Miscellaneous ProblemChapter 10.2 - Cartesian TensorsChapter 10.3 - Tensor Notation And OperationsChapter 10.4 - Inertia TensorChapter 10.5 - Kronecker Delta And Levi-civita SymbolChapter 10.6 - Pseudovectors And PseudotensorsChapter 10.7 - More About ApplicationsChapter 10.8 - Curvilinear CoordinatesChapter 10.9 - Vector Operators In Orthogonal Curvilinear CoordinatesChapter 10.10 - Non-cartesian TensorsChapter 10.11 - Miscellaneous ProblemsChapter 11.3 - Definition Of The Gamma Function; Recursion RelationChapter 11.5 - Some Important Formulas Involving Gamma FunctionsChapter 11.6 - Beta FunctionsChapter 11.7 - Beta Functions In Terms Of Gamma FunctionsChapter 11.8 - The Simple PendulumChapter 11.9 - The Error FunctionChapter 11.10 - Asymptotic SeriesChapter 11.11 - Stirling’s FormulaChapter 11.12 - Elliptic Integrals And FunctionsChapter 11.13 - Miscellaneous ProblemsChapter 12.1 - IntroductionChapter 12.2 - Legendre’s EquationChapter 12.3 - Leibniz’ Rule For Differentiating ProductsChapter 12.4 - Rodrigues’ FormulaChapter 12.5 - Generating Function For Legendre PolynomialsChapter 12.6 - Complete Sets Of Orthogonal FunctionsChapter 12.7 - Orthogonality Of The Legendre PolynomialsChapter 12.8 - Normalization Of The Legendre PolynomialsChapter 12.9 - Legendre SeriesChapter 12.10 - The Associated Legendre FunctionsChapter 12.11 - Generalized Power Series Or The Method Of FrobeniusChapter 12.12 - Bessel’s EquationChapter 12.13 - The Second Solution Of Bessel’s EquationChapter 12.14 - Graphs And Zeros Of Bessel FunctionsChapter 12.15 - Recursion RelationsChapter 12.16 - Differential Equations With Bessel Function SolutionsChapter 12.17 - Other Kinds Of Bessel FunctionsChapter 12.18 - The Lengthening PendulumChapter 12.19 - Orthogonality Of Bessel FunctionsChapter 12.20 - Approximate Formulas For Bessel FunctionsChapter 12.21 - Series Solutions; Fuchs’s TheoremChapter 12.22 - Hermite Functions; Laguerre Functions; Ladder OperatorsChapter 12.23 - Miscellaneous ProblemsChapter 13.1 - IntroductionChapter 13.2 - Laplace’s Equation; Steady-state Temperature In A Rectangular PlateChapter 13.3 - The Diffusion Or Heat Flow Equation; The Schro ̈dinger EquationChapter 13.4 - The Wave Equation; The Vibrating StringChapter 13.5 - Steady-state Temperature In A CylinderChapter 13.6 - Vibration Of A Circular MembraneChapter 13.7 - Steady-state Temperature In A SphereChapter 13.8 - Poisson’s EquationChapter 13.9 - Integral Transform Solutions Of Partial Differential EquationsChapter 13.10 - Miscellaneous ProblemsChapter 14.1 - IntroductionChapter 14.2 - Analytic FunctionsChapter 14.3 - Contour IntegralsChapter 14.4 - Laurent SeriesChapter 14.5 - The Residue TheoremChapter 14.6 - Methods Of Finding ResiduesChapter 14.7 - Evaluation Of Definite Integrals By Use Of The Residue TheoremChapter 14.8 - The Point At Infinity; Residues At InfinityChapter 14.9 - MappingChapter 14.10 - Some Applications Of Conformal MappingChapter 14.11 - Miscellaneous ProblemsChapter 15.1 - IntroductionChapter 15.2 - Sample SpaceChapter 15.3 - Probability TheoremsChapter 15.4 - Methods Of CountingChapter 15.5 - Random VariablesChapter 15.6 - Continuous DistributionsChapter 15.7 - Binomial DistributionChapter 15.8 - The Normal Or Gaussian DistributionChapter 15.9 - The Poisson DistributionChapter 15.10 - Statistics And Experimental MeasurementsChapter 15.11 - Miscellaneous Problems

Book Details

Now in its third edition, Mathematical Concepts in the Physical Sciences provides a comprehensive introduction to the areas of mathematical physics. It combines all the essential math concepts into one compact, clearly written reference.

More Editions of This Book

Corresponding editions of this textbook are also available below:

MATHEMATICAL METHODS IN THE PHY SCIENC
3rd Edition
ISBN: 9781118048870
Mathematical Methods In The Physical Sciences
1st Edition
ISBN: 9780471084198
Mathematical Methods In The Physical Sciences
2nd Edition
ISBN: 9780471044093

Related Math Textbooks with Solutions

Still sussing out bartleby
Check out a sample textbook solution.
See a sample solution