Lab 4 Tensile Test
.pdf
keyboard_arrow_up
School
California State University, Long Beach *
*We aren’t endorsed by this school
Course
361
Subject
Mechanical Engineering
Date
Dec 6, 2023
Type
Pages
11
Uploaded by NuclearNacho48
California State University, Long Beach
Department of Mechanical and Aerospace Engineering
Fall 2023
Lab Report
By
Group Partners:
Experiment Number: 4
Date Performed: October 11, 2023
Title: Tensile Test of Metals and Polymers
Course Number: MAE 361
Section Number: 1
Class Number: EN 4 Room 125
Instructor:
Dr. Shamim Mirza
Objective:
The goal of this experiment is to ascertain the mechanical characteristics of Aluminum 2024-T351,
SAE-1018 Hot Rolled, and Brass through the utilization of a uniaxial tensile test apparatus. The outcomes
of this experiment were subsequently compared to established reference values.
Apparatus:
1
Figure 1: Tensile Testing Machine
2
Figure 2: Extensometer
Samples:
Figure 3: Brass, aluminum, and steel metal pieces
3
Figure 4: Metal pieces after being tested
Procedure:
In this lab, we conducted a tensile test. This test is performed in an SFM-120 tensile machine. The
software on this machine will be used to calculate the samples' tensile strength. To test the tensile strength
of samples made of brass, steel, and aluminum, the machine was used. The cross-section of the standard
0.5-inch diameter is often shaped like a circle, with the distance between the shoulders being four times the
diameter. The device will be used to insert a specimen with the shape depicted in Figure 1 and grasp it from
both ends. Afterward, during the preloading phase, an extensometer—which measures its initial
length—will be left on. After that, the machine moves on to the loading phase, where a tensile load is
applied to the shoulder distance. The software tool then records our data.
4
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
Related Questions
Question 1
You are working on a design team at a small orthopaedic firm. You have been asked to select a cobalt-
chrome-molybdenum (CoCr) material that will not experience plastic deformation under a specific mechanical test, as follows...
A tensile stress is applied along the long axis of a solid cylindrical rod that has a diameter of 10 mm. An applied load of some
magnitude F produces a 7x10-³ mm change in diameter (see figure below, original shape is blue, elongated shape is unshaded).
Q1G: If your design required using the new material to create a wire, what is the largest diameter that would lead to ductile
behavior while still avoiding plastic deformation when exposed to the above loading conditions?
arrow_forward
Need help with this Mechanics of Materials review
arrow_forward
Question 1
You are working on a design team at a small orthopaedic firm. You have been asked to select a cobalt-
chrome-molybdenum (CoCr) material that will not experience plastic deformation under a specific mechanical test, as follows...
A tensile stress is applied along the long axis of a solid cylindrical rod that has a diameter of 10 mm. An applied load of some
magnitude F produces a 7x10³ mm change in diameter (see figure below, original shape is blue, elongated shape is unshaded).
Q1C-D: Using the table of material properties below, calculate the magnitude of stress (o) and applied load (F) required to produce
the 7x10-³ mm change in diameter for rods fabricated from F75 CoCr alloy (as cast) and F90 CoCr alloy (hot forged) materials.
arrow_forward
Stuck need help!
Problem is attached. please view attachment before answering.
Really struggling with this concept.
Please show all work so I can better understand !
Thank you so much.
arrow_forward
Flag question
You have been given the following test sample data following mechanical testing of 15 test pieces of a modified Alumina.
What is the Weibull modulus of this material?
Would you advise the use of this material over one with a Weibull Modulus of 19.6 and a mean failure stress of 270 MPa, if you
anticipate that the peak stress on the material could be 255 MPa?
Sample
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Select one or more:
Failure Stress (MPa)
297
293
270
300
260
286
265
295
4
293
280
288
263
290
298
275
arrow_forward
In the First project: you have been asked to perform tensile testing for four different materialsand analyse the results and work on some NDT process selection:a. For the results shown in Table 1 of the tensile testing that you have performed, find thefollowing, if you know that the original length of specimen is 20.8 mm and the original diameteris 6.4 mm. Fill the calculated results in the summary table below (Table 1):1. Plot the engineering stress versus engineering strain for each material and L-D Diagram.2. Compute the modulus of elasticity, E in GPa.3. Determine the yield strength at a strain offset of 0.002.4. Determine the tensile strength in MPa.5. What is the approximate %El ductility, measured by percent elongation?6. Compute the modulus of resilience.7. Determine the fracture stress in MPa.8. Compute the final area (Af) in mm2.
arrow_forward
Answer part A
arrow_forward
Please provide correct answer as quick as
arrow_forward
The graph below gives a plot of force versus total sample length in a tensile test of a polymer. The sample is cylindrical, with an initial diameter of 1 cm and an initial length of 10 cm. From the data below, calculate the modulus, yield stress, yield strain, tensile strength, and % elongation.
arrow_forward
Question 5: The graph below gives a plot of force versus total sample length in a tensile test of a
polymer. The sample is cylindrical, with an initial diameter of 1 cm and an initial length of 10 cm. From
the data below, calculate the modulus, yield stress, yield strain, tensile strength, and % elongation.
1200
800
10
12
13
14
15
Lensth (cm)
Force (N)
arrow_forward
QUESTION ONE
(a) Distinguish between physical and mechanical properties of materials. Give two examples
of each.
(b) Explain why in a stress versus strain curve, the plastic portion of the graph after necking
tends to drop (ie the force drops) despite that the tension is increasing.
(c) A tensile test uses a copper test specimen that has a gauge length of 80 mm and a di.ameter
of 16 mm. During the test, the specimen yields under a load of 9,600 N. The corresponding
gauge length is 80.24 mm. The maximum load reached is 148,000 N at a gauge length
of 94.2 mm, while fracture happens at a load of 12,800 N and a gauge length of 102 6 mm
Determine the following:
(i) Modulus of elasticity E
(ii) Yield strength Oy
(iii) Fracture strength, ơt
(iv) Tensile strength OTs.
1
arrow_forward
Don’t use ai pls
arrow_forward
You have been given the following test sample data following mechanical testing of 15
test pieces of a modified Alumina.
What is the Weibull modulus of this material?
Would you advise the use of this material over one with a Weibull Modulus of 19.6 and a
mean failure stress of 270 MPa, if you anticipate that the peak stress on the material
could be 255 MPa?
Sample
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Select one or more:
a. 185
b. No
Yes
□d. 49
□e. 28.6
3.7
Failure Stress (MPa)
297
293
270
300
g. 22.8
260
296
265
295
280
288
263
290
298
275
arrow_forward
You have been given the following test sample data following mechanical testing of 15 test pieces of a transformation toughened
zirconia.
What is the Weibull modulus of this material?
Would you advise the use of this material over one with a Weibull Modulus of 25.4 and a mean failure stress of 235 MPa, if
you anticipate that the peak stress on the material could be 220 MPa?
(Since this question has two parts, you must select the two correct options from the list below)
Test Sample
Failure Stress (MPa)
1
255
2
271
3
260
4
223
5
257
6.
267
7
242
8
230
9.
245
10
225
11
254
12
236
13
238
14
251
15
264
O a. 27.3
O b. 4.5
O c. 6.9
O d. Yes
е. 15.2
O f. 18.3
O g. No
O O O O O O O
arrow_forward
When a failure data set for a ceramic material processed in a certain facility is analyzed, it is found that the characteristic strength is 327 MPa and the Weibull modulus is 8.75. A nominally identical batch of material processed in a different facility is also tested and found to have essentially the same characteristic strength, but the Weibull modulus is 6.25. At what stress level is the probability of failure equal to 50% for each set of material? What initial conclusion might you draw about the quality control procedures at the two facilities?
arrow_forward
No wrong answer please , i could downvote
The piece of suture is tested for its stress relaxation properties after cutting 3 cm long sample with a diameter of 1mm. The initial force recorded after stretching 0.1 cm between grips was 5 Newtons. Assume the suture material behave as if it has one relaxation time. The gage length was 1 cm.
a. Calculate the initial stress.
b. Calculate the initial strain.
c. Calculate the modulus of elasticity of the suture if the initial stretching can be considered as linear and elastic.
d. Calculate the relaxation time if the force recorded after 10 hours is 4 Newtons.
arrow_forward
Biomaterial question:
Give a brief and clear answer, please do not write by hand
Question: Sketch a typical stress-strain curve for three major types of biomaterials. Describe Young’s modulus and write Hooke’s Law. What are the time-dependent properties of materials? Explain briefly.
arrow_forward
Topic: Mechanics of Deformable Bodies: Strain and Deformation
Explain the different experimental methods that would relate stress with strain to determine the stress-strain diagram for a specific material.
arrow_forward
QUESTION 18
A chemicals company is looking to optimise the materials selection for their synthesis vessel with safety being the key priority. The tank can be treated as a
small thin-walled spherical pressure vessel and the engineers are considering a 'yield before break' design concept.
Given that a crack of length will propagate by fast fracture when the stress intensity factor reaches the fracture toughness of the material select the correct
materials property index relevant to this design criterion.
Fracture toughness K₁=Y₁₁√√
IC
O M=
O M=
OM=
OM=
O M=
OM=
K
f
P
K 2
IC
K
IC
6
f
6
P
K
f
IC
σα
y
K
IC
2
f
IC
arrow_forward
Actually, these questions are questions of a materials science course. I hope you can help. Thank you..
(6th digit is 0 , last digit is 8)
arrow_forward
Name of a report STRENGTH OF MATERIALS LABORATORY COMPRESSION TEST Hi sir, I know your precious time will be taken, please get a report. I want you to explain to me one or two pages is enough for me, dear sir, by solving the last schedule, may God help you and grant you God bless you
arrow_forward
Yield strength, ultimate tensile strength, linear coefficient of thermal expansion, modulus of elasticity (E), proportional limit, and rupture strength are all
examples of mechanical properties of engineering materials.
O True
False
A non-destructive test is any examination of an object in any manner which will not impair the future usefulness of the object. Non-destructive tests include:
magnetic-particle, impacting testing, radiography, eddy current, and fluorescent-penetrant.
O True
O False
One way to make a metal stronger is to increase the metal's grain size.
O True
O False
--- OL T
A metal that has a crystalline structure is called amorphous.
O True
O False
arrow_forward
In your summer internship, you are tasked with measuring the ultimate tensile strength of a material to determine if it meets your company’s (Superior Super Ships Inc) specification. Your boss is worried that the new low-cost supplier, Shoddy Alloys Inc, may not be reliable but it is the only way to source on-time the SS304 needed to make finishings for Jeff Bezos’ new yacht, the Black Pearl. You collect several load versus displacement curves, as illustrated below. The initial diameter of the round gauge section is 0.25 in.
You also collect the instantaneous diameter of the specimen during the test using a laser.
Using the provided data, calculate what is the ultimate tensile strength measured in this test?
arrow_forward
What is the stimulus applied on the
material to measure its mechanical
property? *
Your answer
arrow_forward
Compute the elastic modulus for the following metal alloys, whose stress-strain behaviors may be observed in the "Tensile Tests"
module of Virtual Materials Science and Engineering (VMSE): (a) titanium, (b) tempered steel, (c) aluminum, and (d) carbon steel.
How do these values compare with those presented in Table 6.1 for the same metals?
Part 1
a) What is the elastic modulus of titanium in GPa using the data from VMSE?
b) What is the elastic modulus of titanium in GPa from Table 6.1?
a) E=
i
GPa
b) E=
i
GPa
eTextbook and Media
Save for Later
Attempts: 0 of 5 used
Submit Answer
arrow_forward
SEE MORE QUESTIONS
Recommended textbooks for you
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Related Questions
- Question 1 You are working on a design team at a small orthopaedic firm. You have been asked to select a cobalt- chrome-molybdenum (CoCr) material that will not experience plastic deformation under a specific mechanical test, as follows... A tensile stress is applied along the long axis of a solid cylindrical rod that has a diameter of 10 mm. An applied load of some magnitude F produces a 7x10-³ mm change in diameter (see figure below, original shape is blue, elongated shape is unshaded). Q1G: If your design required using the new material to create a wire, what is the largest diameter that would lead to ductile behavior while still avoiding plastic deformation when exposed to the above loading conditions?arrow_forwardNeed help with this Mechanics of Materials reviewarrow_forwardQuestion 1 You are working on a design team at a small orthopaedic firm. You have been asked to select a cobalt- chrome-molybdenum (CoCr) material that will not experience plastic deformation under a specific mechanical test, as follows... A tensile stress is applied along the long axis of a solid cylindrical rod that has a diameter of 10 mm. An applied load of some magnitude F produces a 7x10³ mm change in diameter (see figure below, original shape is blue, elongated shape is unshaded). Q1C-D: Using the table of material properties below, calculate the magnitude of stress (o) and applied load (F) required to produce the 7x10-³ mm change in diameter for rods fabricated from F75 CoCr alloy (as cast) and F90 CoCr alloy (hot forged) materials.arrow_forward
- Stuck need help! Problem is attached. please view attachment before answering. Really struggling with this concept. Please show all work so I can better understand ! Thank you so much.arrow_forwardFlag question You have been given the following test sample data following mechanical testing of 15 test pieces of a modified Alumina. What is the Weibull modulus of this material? Would you advise the use of this material over one with a Weibull Modulus of 19.6 and a mean failure stress of 270 MPa, if you anticipate that the peak stress on the material could be 255 MPa? Sample 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Select one or more: Failure Stress (MPa) 297 293 270 300 260 286 265 295 4 293 280 288 263 290 298 275arrow_forwardIn the First project: you have been asked to perform tensile testing for four different materialsand analyse the results and work on some NDT process selection:a. For the results shown in Table 1 of the tensile testing that you have performed, find thefollowing, if you know that the original length of specimen is 20.8 mm and the original diameteris 6.4 mm. Fill the calculated results in the summary table below (Table 1):1. Plot the engineering stress versus engineering strain for each material and L-D Diagram.2. Compute the modulus of elasticity, E in GPa.3. Determine the yield strength at a strain offset of 0.002.4. Determine the tensile strength in MPa.5. What is the approximate %El ductility, measured by percent elongation?6. Compute the modulus of resilience.7. Determine the fracture stress in MPa.8. Compute the final area (Af) in mm2.arrow_forward
- Answer part Aarrow_forwardPlease provide correct answer as quick asarrow_forwardThe graph below gives a plot of force versus total sample length in a tensile test of a polymer. The sample is cylindrical, with an initial diameter of 1 cm and an initial length of 10 cm. From the data below, calculate the modulus, yield stress, yield strain, tensile strength, and % elongation.arrow_forward
- Question 5: The graph below gives a plot of force versus total sample length in a tensile test of a polymer. The sample is cylindrical, with an initial diameter of 1 cm and an initial length of 10 cm. From the data below, calculate the modulus, yield stress, yield strain, tensile strength, and % elongation. 1200 800 10 12 13 14 15 Lensth (cm) Force (N)arrow_forwardQUESTION ONE (a) Distinguish between physical and mechanical properties of materials. Give two examples of each. (b) Explain why in a stress versus strain curve, the plastic portion of the graph after necking tends to drop (ie the force drops) despite that the tension is increasing. (c) A tensile test uses a copper test specimen that has a gauge length of 80 mm and a di.ameter of 16 mm. During the test, the specimen yields under a load of 9,600 N. The corresponding gauge length is 80.24 mm. The maximum load reached is 148,000 N at a gauge length of 94.2 mm, while fracture happens at a load of 12,800 N and a gauge length of 102 6 mm Determine the following: (i) Modulus of elasticity E (ii) Yield strength Oy (iii) Fracture strength, ơt (iv) Tensile strength OTs. 1arrow_forwardDon’t use ai plsarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY