Lab 2 Report PHY 111
.pdf
keyboard_arrow_up
School
Rio Salado Community College *
*We aren’t endorsed by this school
Course
111
Subject
Mechanical Engineering
Date
Dec 6, 2023
Type
Pages
8
Uploaded by 566890o
PHY 111
6/3/2023
Lab 2 Constant Acceleration Motion
Lab Purpose
The purpose of this lab is to analyze the motion of two different objects. In this lab, we analyzed
the positions, velocities, and accelerations of the two objects for any given moment in time.
Throughout the lab, we gathered data to create position vs. time and velocity vs. time graphs and
used those graphs to determine kinematic equations. This lab not only helps determine the
velocity approximations of two objects but also determines the position of the objects at a certain
time using the data collected.
Materials
The materials included a printer, paper, ruler, pen or pencil, tape, and scissors.
Procedure
First, Tape 1 and both sections of Tape 2 were printed and cut out to create three separate tapes.
After cut out, both section one and section two of Tape 2 were taped together to create one
continuous tape. After that, a ruler was used to measure positions of the object for both Tape 1
and Tape 2 at each 0.1 second interval as indicated by the dots relative to zero. Each data point
was recorded in two separate data tables for Tape 1 and Tape 2. Once all the data was collected
in a data table in Excel, the data was plotted into a graph for further analysis.
Photograph(s) of Experiment
Data
Tape 1:
Time (seconds)
Position (cm)
Velocity (cm/s)
Acceleration
(cm/s/s)
0.1
0.8
0.2
3.1
24
0.3
5.6
24.5
-2.5
0.4
8.0
23.5
12.5
0.5
10.3
27
15
0.6
13.4
26.5
-32.5
0.7
15.6
20.5
-35
0.8
17.5
19.5
0
0.9
19.5
20.5
2.5
1.0
21.6
20
-5
1.1
23.5
19.5
1.2
25.5
Tape 2:
Time (seconds)
Position (cm)
Velocity (cm/s)
Acceleration
(cm/s/s)
0.1
0.8
0.2
1.1
8
0.3
2.4
16.5
80
0.4
4.4
24
75
0.5
7.2
31.5
82.5
0.6
10.7
40.5
85
0.7
15.3
48.5
72.5
0.8
20.4
55
65
0.9
26.3
61.5
75
1.0
32.7
70
92.5
1.1
40.3
80
1.2
48.7
Calculations and Graphs
X= Position (cm) Y= Velocity (cm/s) t= Time (seconds)
Velocity (cm/s)
Acceleration (cm/s/s)
=(X
₃
-X
₁
) / (t
₃
- t
₁
)
(Y
₃
- Y
₁
) / (t
₃
- t
₁
)
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
Related Questions
Newton’s 2nd Law Lab (Modeling friendly lab)
Go to the PhET simulation Forces & Motion. https://phet.colorado.edu/sims/html/forcesandmotionbasics/latest/forcesandmotionbasics_en.html
Select “Acceleration”
Click to show Forces, Sum of Forces, Values, Mass, and Acceleration.
There are two experiments for this activity – make sure you include both.
Experiment #1: Acceleration vs. Force
In this lab you will determine the relationship between acceleration and net force.
Choose a mass at the beginning, and keep it constant for this entire experiment.
Set the friction to zero. This will make your Applied Force equal to the net force.
Record data for five different values of Applied Force.
Graph Acceleration vs. Net Force.
Graph this in Google sheets(you want a line graph - it should only have one line).
Make sure that Applied Force information is used as the x value
Make sure that Acceleration information is used as the y value
Add a trendline – see what fits best –…
arrow_forward
topic: Rectilinear Motion & Plane Curvilinear MotionRectilinear Motion & Plane Curvilinear Motion
arrow_forward
i need the final answer quickk pls
arrow_forward
For the Following question Graph all 4 : [I just need all 4 graphs and please explain and make clean solution]
Position vs time
Velocity vs time
Acceleration vs time
Force vs time
[For your convenience, I have solved the numerical solutions for the problem] (Please Look at the picture since it is much cleaner)
Question : A 550 kilogram mass initially at rest acted upon by a force of F(t) = 50et Newtons. What are the acceleration, speed, and displacement of the mass at t = 4 second ?
a =(50 e^t)/(550 ) [N/kg]
v = ∫_0^t▒(50 e^t )dt/(550 )= v_0 +(50 e^t-50)/550=((e^t- 1))/11
x = ∫_0^t▒(e^t- 1)dt/(11 )= x_0 +(e^t- t - 1)/(11 )
a(4s)=(50*54.6)/550= 4.96[m/s^2 ]
v(4s)=((e^4-1))/11= 4.87[m/s]
x(4s)=((e^4- 4 - 1))/11= 4.51 [m]
arrow_forward
Please recheck and provide clear and complete step-by-step solution/explanation in scanned handwriting or computerized output thank you
arrow_forward
4
arrow_forward
A mechanic changing a tire rolls a wheel along the ground towards the car. The radius of the
wheel is 42cm, and the speed of the wheel as it rolls is 2 revolutions per second.
Height Above Ground
(m)
radiu
HIDE
wheel spet
Time
The diagram above illustrates the vertical motion of a point on the tire over time. It is possible to model
the height of this point using a sinusoidal function of the form h(t)=-a sin[b(t-c)]+d.
a) Determine the length of time required for one revolution of the tire.
b) State the numerical value for each of the parameters a, b, c & d.
And write a function representing the motion of the point in the form h(t)= -a sin[b(t−c)]+d.
arrow_forward
PLEASE ANSWER NUMBER 14.MECH 221-KINEMATICS: PLEASE GIVE DETAILED ANSWER AND CORRECT ANSWERS. I WILL REPORT TO BARTLEBY THOSE TUTORS WHO WILL GIVE INCORRECT ANSWERS.
arrow_forward
1a) Plot the position in the x-direction as a function of time for both birds on the same co-ordinatesystem (the plots do not have to be exact).b) Write down the equations of motion in x and y directions for bird 1 and 2.
c)Using ?⃗ଵ(?) and ?⃗ଶ(?) to represent the position vector of birds 1 and 2, respectively, write downthe components of the position vector for both birds in parenthesis format.d) Write an equation using the tangent of the position vectors that describes when the huntershould release the arrow.e) Solve this equation for the time at which the hunter should release his arrow
PLEASE explain, especially 1c, d, and e
arrow_forward
Please recheck and provide clear and complete step-by-step solution in scanned handwriting or computerized output thank you
arrow_forward
Please copy the graph that you see on the picture. I keep on sending this graph in but I get different graphs. Please generate the exact graph with the orange and blue dots along this the two lines the goes across the graph and overlaps each other. Make sure you use MATLAB and the no errors comes up when you run it. Please send the code with no errors or warring signs. Please make it 100 % accurate to the graph that you see in the picture along with the data.
arrow_forward
I need help coding in MATLAB. I have a .txt file containing the following data. That data is saved in a file named data.txt. I am wondering how I could extract all or some of that data into another .m file. Can you show me the code.
[[5.0018696581196584, 17.863820207570207, -13.086858974358975], [5.0018696581196584, 17.863820207570207, -13.086858974358975], [5.0018696581196584, 17.863820207570207, -13.086858974358975]]
arrow_forward
My professor said that I need to use the numbers as shown on the picture and make the exact graph that is also shown on the picture. But I don’t know how to put this in to MATLAB. Please send the code that makes the graph that is shown in the picture. Make it 100% exactly the same.
arrow_forward
I need help in the following MATLAB code. How do I add the code to answer the following question "Do you find more object detections in the image than the one that is cropped out? Explain how you would discriminate that from a dead pixel, a hot pixel, or a cosmic ray event."
fname = '00095337.fit';
fInfo = fitsinfo(fname);
img = fitsread(fname);
% Crop the image to show just the object:
img_cropped = img(1980:2030,1720:1780);
% Load the labeled image
img_labeled = imread('00095337_labeled_stars.png');
img_labeled = img_labeled(102:863,605:1363,:);
% Get rid of "hot" pixels (cosmic rays, disfunctional pixels)
max_acceptable_value = 1300;
img(img>max_acceptable_value) = max_acceptable_value;
% Plot the images
f1 = figure();
tgroup1 = uitabgroup('Parent',f1);
tab(1) = uitab('Parent', tgroup1, 'Title', 'Raw image');
ax(1) = axes('parent',tab(1));
imagesc(img)
axis equal
axis([0,size(img,2),0,size(img,1)]+0.5)
colormap(gray(256));
xlabel('x [px]')
ylabel('y [px]')…
arrow_forward
You are part of a car accident investigative team, looking into a case where a car drove off a bridge. You are using the lab projectile launcher to simulate the accident and to test your mathematical model (an equation that applies to the situation) before you apply the model to the accident data. We are assuming we can treat the car as a projectile.
arrow_forward
Scenario
You are assigned a role as a mechanical engineer for a vehicle design manufacturing company. Your
department has a software to perform numerical differentiation and integration. To be able to verify the
results of using the software and validate these results, your department manager has asked you to
analytically perform some tasks to validate the results generated by the software.
Q: is the last two digits of your student Id number. If your number is (20110092) then Q=92.
P: is the last digit of your student Id Number. If your number is (20110092) then P=2,
If that digit equals zero then use P=1. Example: If your number is (20110040) then P=1.
Task 1
Determine the gradient of following functions at the given points:
a) x(t) = (2t7 + P t-2)² + (6vi – 5) when t = 1
5s+7
b) v(s) =
when s = 3
(s²-P)2
c) i(t) = 5(1 – In(2t – 1) )
when t= 1 sec.
d) V(t) =5sin(100nt + 0.2) Volts , find i(t) = 10 × x10-6 dV©)
Ampere when t= 1ms.
dt
e) y(t) = e¬(t-n) sin(Qt + P)
when t = n radian
f)…
arrow_forward
There is a small space between the orange and purple line could you please connect the two lines together also can you please make the purple line shorter and then connect the purple line to the orange line, please take out the box that says “Diesel, petrol, Diesel best fit, petrol best fit”. Also when ever I run this code the graph shows up but there are still errors that comes up could you please fix them when you are running this on MATLAB.
Please use this code on MATLAB and fix it.
% Sample data for Diesel and Petrol cars
carPosition = linspace(1, 60, 50); % Assumed positions of cars
% Fix the random seed for reproducibility
rng(50);
% Assumed CO2 emissions for Diesel and Petrol
CO2Diesel = 25 + 5*cos(carPosition/60*2*pi) + randn(1, 50)*5; % Random data for Diesel
CO2Petrol = 20 + 5*sin(carPosition/60*2*pi) + randn(1, 50)*5; % Random data for Petrol
% Fit polynomial curves
pDiesel = polyfit(carPosition, CO2Diesel, 3);
pPetrol = polyfit(carPosition, CO2Petrol, 3);
% Generate…
arrow_forward
Matlab code please
arrow_forward
I could really use some assistance on part b,c,d,e,f
arrow_forward
You are watching a live concert. You can also find the concert streaming live on Spotify. About how far must you stand from the stage in order for
the live concert and the live stream to be perfectly in sync?
HINT: Assume the radio signal (Spotify) has to travel all the way around the Earth.
circumference of the Earth (average): 40,041,000 m
Speed of sound: 345 m/s
Speed of light: 300,000,000 m/s
arrow_forward
Don't Use Chat GPT Will Upvote And Give Handwritten Solution Please
arrow_forward
Please assist with this question. I reviewed the lecture notes that was given and do not understand. Please answer with a detailed explanation. Thank you. I believe there is an easier way to solve this using matlab apparently but I dont know.
I will have an image of the reference slide.
arrow_forward
Fast pls solve this question correctly in 5 min pls I will give u like for sure
Anu
arrow_forward
docs.google.com a
If a car changes speed from 20 m/s to 22
m/s in 10 seconds, its average acceleration
is *
20 m/s2
2 m/s2
0.2 m/s2
22 m/s2
21 m/s2
Which of the following is considered to be
an "accelerator" in an automobile? *
All of them.
gas pedal
steering wheel
brake pedal
non of them
On acceleration-time graph, a horizontal
...
10
O O O
O O
arrow_forward
RJ gandhi
arrow_forward
Part III Capstone Problem
Interactive Physics - [Lab7Part3.IP]
Eile Edit World View Object Define Measure Script Window Help
Run StoplI Reset
圖|& 品凸?
Time
Length of Spring 22
6.00
dx
Center of Mass of Rectangle 2
5.000
Tension of Rope 3
Jain@
IFI
... N
ot
rot
***lad
Split
4.000
Velocity of Center of Mass of Rectangle 2
Vx Vx
V Vy
MM
Ve
- m/s
m/s
3.00
*** m/s
Vo
..* lad/s
2 00
Center of Mass of Rectangle 1
1.000
tol
rot
*.* rad
EVelocity of Center of Mass of Rectangle 1
Vx Vx
VVy
M
0.000
-m/s
w 30
m/s
w..
MI
Ve
母100
*** m/s
Vo
... rad/s
+
EAcceleration of Center of Mass of Rectangle 1
Ax Ax
A Ay
AUJAI
Ae
--- m/s^2
... m/s^2
-- m/s^2
.-- rad/s^2
3.00
Aø
Mass M1 = 2.25 kg is at the end of a rope that is 2.00 m in length. The initial angle with
respect to the vertical is 60.0° and M1 is initially at rest. Mass M1 is released and strikes M2
= 4.50 kg exactly horizontally. The collision is elastic. After collision, mass M2 is moving on
a frictionless surface, but runs into a rough patch 2.00…
arrow_forward
I’m making the graph that you see in the picture but the code that I’m using makes the line with to many curves. Could you make the lines look like the one that you see on the graph. Don’t change the color just make it with a little bit less curves like you see in the picture.
Use this code on MATLAB and fix it.
% Sample data for Diesel and Petrol cars
carPosition = linspace(1, 60, 50); % Assumed positions of cars
% Fix the random seed for reproducibility
rng(50);
% Assumed CO2 emissions for Diesel and Petrol
CO2Diesel = 25 + 5*cos(carPosition/60*2*pi) + randn(1, 50)*5; % Random data for Diesel
CO2Petrol = 20 + 5*sin(carPosition/60*2*pi) + randn(1, 50)*5; % Random data for Petrol
% Fit polynomial curves
pDiesel = polyfit(carPosition, CO2Diesel, 3);
pPetrol = polyfit(carPosition, CO2Petrol, 3);
% Generate points for best fit lines
fitDiesel = polyval(pDiesel, carPosition);
fitPetrol = polyval(pPetrol, carPosition);
% Combined best fit
combinedFit = (fitDiesel + fitPetrol) / 2;…
arrow_forward
Tires are one of the most frequently encountered applications of the gas laws that we never think about. We fill our tires with air, or with nitrogen, but it always works out the same way. Enough gas goes in, the tire inflates, and then the pressure starts going up. In this assignment, we’ll be investigating the ways that the gas laws impact how we treat our tires.
Q1. I have good information that in Fast 29, Dominic Toretto (Vin Diesel) will need to refill a tire quickly during a dramatic moment. For this reason, he has a 3.00 L tank of compressed air that is under 2.7892*103 mmHg and is kept cool in dry ice at -35.0 °C.
When Dom hooks his compressed air up to his completely empty 10.50 L tire at 39.2 °C and lets it run, what will his final tire pressure be, in atm? Assume all the air is transferred into the tire. Is his tire pressure above the 2.31 atm that he needs to save the planet/his family/his crew?
Q2. Your car tire pressure sensor looks to see when your tire pressure…
arrow_forward
Please help solve the question shown. I attempted this problem over five times and it keeps saying my answers are wrong. I typed 11.1hr, 1.11hr, 8.67hr, 6.9384hr, and 7.1152hr but it keeps saying that those are all incorrect. Can you please show how to get the correct answer so I can understand how to solve it? Thank you!
arrow_forward
I am trying to plot an orbit in MATLAB. There is something wrong with my code because the final values I get are incorrect. The code is shown below. The correct values are in the image.
mu = 3.986*10^5; % Earth's gravitational parameter [km^3/s^2]
% Transforming orbital elements to cartesian coordinate system for LEOa_1 = 6782.99;e_1 = 0.000685539;inc_1 = 51.64;v_1 = 5;argp_1 = 30;raan_1 = 10;
[x_1, y_1, z_1, vx_1, vy_1, vz_1] = kep2cart(a_1, e_1, inc_1, raan_1, ... argp_1, v_1);
Y_1 = [x_1, y_1, z_1, vx_1, vy_1, vz_1];
% time_span for two revolutions (depends on the orbit)t1 = [0 (180*60)];
% Setting tolerancesoptions = odeset('RelTol',1e-12,'AbsTol',1e-12);
% Using ODE45 to numerically integrate for LEO[t_1, state_1] = ode45(@OrbitProp, t1, Y_1, options);
function dYdt = OrbitProp(t, Y)
mu = 3.986*10^5; % Earth's gravitational parameter [km^3/s^2]
% State Vector
x = Y(1); % [km]
y = Y(2); % [km]
z = Y(3); % [km]
vx = Y(4);…
arrow_forward
In the automotive industry, supercars are highly accredited with how they are manufacture; from the
type of car chassis used to the type of materials employed. Often enough, companies like BMW,
Mercedes & Audi produces supercars that exemplifies a better reliability compared to other automotive
manufacturing companies. This is because they pay close attention to the details on how the car is
manufactured; right from raw materials to a finished supercar. The task given to you is to watch the
video link provided below & explain the electrostatic process acquired for the two different models of
BMW vehicles.
https://www.youtube.com/watch?v=sUqKUbmdOr0
Pls watch the video before answering
arrow_forward
I need a MATLAB code that uses image segmentation to take this photo and single out the weeds in the yard. It also needs to calculate the number of pixels/percentage of the pixels that are in the weeds. Please provide notes in the lines as well so it is easy to follow and understand. Thank you for your help!
arrow_forward
SEE MORE QUESTIONS
Recommended textbooks for you
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Related Questions
- Newton’s 2nd Law Lab (Modeling friendly lab) Go to the PhET simulation Forces & Motion. https://phet.colorado.edu/sims/html/forcesandmotionbasics/latest/forcesandmotionbasics_en.html Select “Acceleration” Click to show Forces, Sum of Forces, Values, Mass, and Acceleration. There are two experiments for this activity – make sure you include both. Experiment #1: Acceleration vs. Force In this lab you will determine the relationship between acceleration and net force. Choose a mass at the beginning, and keep it constant for this entire experiment. Set the friction to zero. This will make your Applied Force equal to the net force. Record data for five different values of Applied Force. Graph Acceleration vs. Net Force. Graph this in Google sheets(you want a line graph - it should only have one line). Make sure that Applied Force information is used as the x value Make sure that Acceleration information is used as the y value Add a trendline – see what fits best –…arrow_forwardtopic: Rectilinear Motion & Plane Curvilinear MotionRectilinear Motion & Plane Curvilinear Motionarrow_forwardi need the final answer quickk plsarrow_forward
- For the Following question Graph all 4 : [I just need all 4 graphs and please explain and make clean solution] Position vs time Velocity vs time Acceleration vs time Force vs time [For your convenience, I have solved the numerical solutions for the problem] (Please Look at the picture since it is much cleaner) Question : A 550 kilogram mass initially at rest acted upon by a force of F(t) = 50et Newtons. What are the acceleration, speed, and displacement of the mass at t = 4 second ? a =(50 e^t)/(550 ) [N/kg] v = ∫_0^t▒(50 e^t )dt/(550 )= v_0 +(50 e^t-50)/550=((e^t- 1))/11 x = ∫_0^t▒(e^t- 1)dt/(11 )= x_0 +(e^t- t - 1)/(11 ) a(4s)=(50*54.6)/550= 4.96[m/s^2 ] v(4s)=((e^4-1))/11= 4.87[m/s] x(4s)=((e^4- 4 - 1))/11= 4.51 [m]arrow_forwardPlease recheck and provide clear and complete step-by-step solution/explanation in scanned handwriting or computerized output thank youarrow_forward4arrow_forward
- A mechanic changing a tire rolls a wheel along the ground towards the car. The radius of the wheel is 42cm, and the speed of the wheel as it rolls is 2 revolutions per second. Height Above Ground (m) radiu HIDE wheel spet Time The diagram above illustrates the vertical motion of a point on the tire over time. It is possible to model the height of this point using a sinusoidal function of the form h(t)=-a sin[b(t-c)]+d. a) Determine the length of time required for one revolution of the tire. b) State the numerical value for each of the parameters a, b, c & d. And write a function representing the motion of the point in the form h(t)= -a sin[b(t−c)]+d.arrow_forwardPLEASE ANSWER NUMBER 14.MECH 221-KINEMATICS: PLEASE GIVE DETAILED ANSWER AND CORRECT ANSWERS. I WILL REPORT TO BARTLEBY THOSE TUTORS WHO WILL GIVE INCORRECT ANSWERS.arrow_forward1a) Plot the position in the x-direction as a function of time for both birds on the same co-ordinatesystem (the plots do not have to be exact).b) Write down the equations of motion in x and y directions for bird 1 and 2. c)Using ?⃗ଵ(?) and ?⃗ଶ(?) to represent the position vector of birds 1 and 2, respectively, write downthe components of the position vector for both birds in parenthesis format.d) Write an equation using the tangent of the position vectors that describes when the huntershould release the arrow.e) Solve this equation for the time at which the hunter should release his arrow PLEASE explain, especially 1c, d, and earrow_forward
- Please recheck and provide clear and complete step-by-step solution in scanned handwriting or computerized output thank youarrow_forwardPlease copy the graph that you see on the picture. I keep on sending this graph in but I get different graphs. Please generate the exact graph with the orange and blue dots along this the two lines the goes across the graph and overlaps each other. Make sure you use MATLAB and the no errors comes up when you run it. Please send the code with no errors or warring signs. Please make it 100 % accurate to the graph that you see in the picture along with the data.arrow_forwardI need help coding in MATLAB. I have a .txt file containing the following data. That data is saved in a file named data.txt. I am wondering how I could extract all or some of that data into another .m file. Can you show me the code. [[5.0018696581196584, 17.863820207570207, -13.086858974358975], [5.0018696581196584, 17.863820207570207, -13.086858974358975], [5.0018696581196584, 17.863820207570207, -13.086858974358975]]arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY