HW5_soln

pdf

School

University of Maryland *

*We aren’t endorsed by this school

Course

283

Subject

Mechanical Engineering

Date

Jan 9, 2024

Type

pdf

Pages

11

Report

Uploaded by SuperHumanThunderHyena36

Name: HW5 Page 1 of 11 ENAE283 Homework #5 Due Saturday, 7/1/22 by 11:59PM For all homework assignments in this course, you are required to submit fully- explained solutions, indicating the sources for any numbers and equations used. Boxed areas are provided for your final answers. If you cannot use this document directly as your worksheets, please work neatly on your own paper. Include a header on each page like the ones shown, write the problem statement at the top and box your final answer at the lower right corner. Pay attention to appropriate significant figures in final answers.
Name: HW5 Page 2 of 11 (1-11) You have a choice for this portion of the HW: you can study the performance characteristics of a propeller driven airplane (Beechcraft Bonanza) or a twin jet attack aircraft (Fairchild Republic A-10). Pick one and then follow through the whole series of problems relating to that airplane. Each of these problems is most easily accomplished by employing a spreadsheet tool like Excel, since all of the calculations are repeated at different velocities and altitudes. Your Excel spreadsheet or MATLAB arrays should contain the following calculations. 𝑉𝑉 ∞ οΏ½ 𝑓𝑓𝑓𝑓 𝑠𝑠 οΏ½ 𝐢𝐢 𝐿𝐿 = π‘Šπ‘Š π‘žπ‘ž ∞ 𝑆𝑆 𝐢𝐢 𝐷𝐷 = 𝐢𝐢 𝐷𝐷 , 0 + 𝐢𝐢 𝐷𝐷 , 𝑖𝑖 = 𝐢𝐢 𝐷𝐷 , 0 + 𝐢𝐢 𝐿𝐿 2 / πœ‹πœ‹πœ‹πœ‹πœ‹πœ‹πœ‹πœ‹ 𝐢𝐢 𝐿𝐿 / 𝐢𝐢 𝐷𝐷 𝑇𝑇 𝑅𝑅 = π‘Šπ‘Š 𝐢𝐢 𝐿𝐿 / 𝐢𝐢 𝐷𝐷 [ 𝑙𝑙𝑙𝑙 ] 𝑃𝑃 𝑅𝑅 = 𝑇𝑇 𝑅𝑅 𝑉𝑉 ∞ �𝑓𝑓𝑓𝑓 βˆ™ 𝑙𝑙𝑙𝑙 𝑠𝑠 οΏ½ 𝑃𝑃 𝐴𝐴 �𝑓𝑓𝑓𝑓 βˆ™ 𝑙𝑙𝑙𝑙 𝑠𝑠 οΏ½ 𝑇𝑇 𝐴𝐴 [ 𝑙𝑙𝑙𝑙 ] πœ‹πœ‹πΆπΆ = 𝑃𝑃 𝐴𝐴 βˆ’ 𝑃𝑃 𝑅𝑅 π‘Šπ‘Š οΏ½ 𝑓𝑓𝑓𝑓 𝑠𝑠 οΏ½ The only variable that changes is the density between Sea Level and altitude. Besides changing the thrust/power required curves via the π‘žπ‘ž ∞ term, this also affects the power available from the engine which is assumed to be proportional to density, so 𝑃𝑃 𝐴𝐴 , 𝑆𝑆𝐿𝐿 𝜌𝜌 𝑆𝑆𝐿𝐿 = 𝑃𝑃 𝐴𝐴 , π‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Ž 𝜌𝜌 π‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Ž β†’ 𝑃𝑃 𝐴𝐴 , π‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Ž = 𝑃𝑃 𝐴𝐴 , 𝑆𝑆𝐿𝐿 οΏ½ 𝜌𝜌 π‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Ž 𝜌𝜌 𝑆𝑆𝐿𝐿 οΏ½ For PR at altitude, you can either rerun the above calculations with a new density value, or multiply both 𝑉𝑉 ∞ and π‘ƒπ‘ƒπœ‹πœ‹ 𝑆𝑆𝐿𝐿 by the altitude correction factor �𝜌𝜌 𝑆𝑆𝐿𝐿 𝜌𝜌 π‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Ž ⁄ . Note: If you don’t multiply 𝑉𝑉 ∞ by the correction factor, your plot will be incorrect. See below.
Name: HW5 Page 3 of 11 Can Prop Plane - Beechcraft Bonanza V-tailed, Single Engine Private Plane The characteristics of this airplane are as follows: wing area = 180 ft 2 ; aspect ratio = 6.2; Oswald efficiency factor = 0.92; weight = 3000 lb; zero-lift drag coefficient = 0.027; single piston engine power = 350 hp (at sea level); propeller efficiency = 0.81; specific fuel consumption = 0.42 lb fuel/hp.hr; fuel capacity = 45 gallons; maximum gross weight = 3400 lb; C Lmax = 1.2 on take-off; wings are 4 ft off the ground during take-off roll; C Lmax = 1.8 on landing (with flaps). 1. Find a picture of this airplane online, copy and paste it into your homework and cite. 2. Plot the power required versus velocity curve at sea level.
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help
Name: HW5 Page 4 of 11 3. Determine the maximum velocity at sea level. From PR=PA max , 𝑉𝑉 π‘šπ‘šπ‘Žπ‘Žπ‘šπ‘š = 293 𝑓𝑓𝑓𝑓 / 𝑠𝑠 4. Draw the power required versus velocity curve at 14,000 ft altitude. See above 5. Determine the maximum velocity at 14,000 ft altitude. 𝑉𝑉 π‘šπ‘šπ‘Žπ‘Žπ‘šπ‘š = 283 𝑓𝑓𝑓𝑓 / 𝑠𝑠 6. Calculate the maximum rate of climb at sea level and at 14,000 ft altitude. πœ‹πœ‹ . 𝐢𝐢 . π‘šπ‘šπ‘Žπ‘Žπ‘šπ‘š = ( 𝑃𝑃 𝐴𝐴 βˆ’ 𝑃𝑃 𝑅𝑅 ) π‘šπ‘šπ‘Žπ‘Žπ‘šπ‘š / π‘Šπ‘Š πœ‹πœ‹ . 𝐢𝐢 . 𝑆𝑆𝐿𝐿 = 42.3 𝑓𝑓𝑓𝑓 𝑠𝑠 = 2,538 𝑓𝑓𝑓𝑓 π‘šπ‘šπ‘šπ‘šπ‘šπ‘š π‘Žπ‘Žπ‘šπ‘šπ‘Žπ‘Ž πœ‹πœ‹ . 𝐢𝐢 . 14π‘˜π‘˜ = 21.8 𝑓𝑓𝑓𝑓 𝑠𝑠 = 1,308 𝑓𝑓𝑓𝑓 / π‘šπ‘šπ‘šπ‘šπ‘šπ‘š 7. Estimate the absolute ceiling of this airplane (assuming rate of climb varies linearly with altitude). From the R.C. calculations above, πœ‹πœ‹ . 𝐢𝐢 . ( β„Ž ) = 42 . 3βˆ’21 . 8 0βˆ’14 , 000 β„Ž + 42.3 [ π‘“π‘“π‘Žπ‘Ž 𝑠𝑠 ] Extrapolating the πœ‹πœ‹ . 𝐢𝐢 . trend from above to find when πœ‹πœ‹ . 𝐢𝐢 . = 0, β„Ž π‘Žπ‘Žπ‘Žπ‘Žπ‘ π‘  β‰ˆ 28,888 𝑓𝑓𝑓𝑓 8. Calculate the range and endurance of this aircraft at sea level. For propeller-driven aircraft, πœ‹πœ‹ π‘šπ‘šπ‘Žπ‘Žπ‘šπ‘š = πœ‚πœ‚ 𝑐𝑐 οΏ½ 𝐢𝐢 𝐿𝐿 𝐢𝐢 𝐷𝐷 οΏ½ π‘šπ‘šπ‘Žπ‘Žπ‘šπ‘š ln οΏ½ π‘Šπ‘Š 0 π‘Šπ‘Š 1 οΏ½ οΏ½ 𝐢𝐢 𝐿𝐿 𝐢𝐢 𝐷𝐷 οΏ½ π‘šπ‘šπ‘Žπ‘Žπ‘šπ‘š π‘œπ‘œπ‘π‘π‘π‘π‘œπ‘œπ‘œπ‘œπ‘ π‘  π‘€π‘€β„Žπœ‹πœ‹π‘šπ‘š 𝐢𝐢 𝐷𝐷 , 0 = 𝐢𝐢 𝐷𝐷 , 𝑖𝑖 = 𝐢𝐢 𝐿𝐿 2 πœ‹πœ‹πœ‹πœ‹πœ‹πœ‹πœ‹πœ‹ β†’ 𝐢𝐢 𝐿𝐿 = 0.696 π‘Žπ‘Žπ‘šπ‘šπ‘Žπ‘Ž 𝐢𝐢 𝐷𝐷 = 𝐢𝐢 𝐷𝐷 , 0 + 𝐢𝐢 𝐷𝐷 , 𝑖𝑖 = 0.054 β†’ οΏ½ 𝐢𝐢 𝐿𝐿 𝐢𝐢 𝐷𝐷 οΏ½ π‘šπ‘šπ‘Žπ‘Žπ‘šπ‘š = 12.88 πœ‹πœ‹ π‘šπ‘šπ‘Žπ‘Žπ‘šπ‘š = 3.81 Γ— 10 6 𝑓𝑓𝑓𝑓 = 822.6 π‘šπ‘šπ‘šπ‘š 𝐢𝐢 𝐿𝐿 3 2 / 𝐢𝐢 𝐷𝐷 π‘šπ‘šπ‘Žπ‘Žπ‘šπ‘š = 12.167 𝐸𝐸 π‘šπ‘šπ‘Žπ‘Žπ‘šπ‘š = πœ‚πœ‚ 𝑐𝑐 οΏ½ 𝐢𝐢 𝐿𝐿 3 2 𝐢𝐢 𝐷𝐷 οΏ½ π‘šπ‘šπ‘Žπ‘Žπ‘šπ‘š οΏ½ 2 πœŒπœŒπ‘†π‘† οΏ½ 1 οΏ½π‘Šπ‘Š 1 βˆ’ 1 οΏ½π‘Šπ‘Š 0 οΏ½ = 2.93 Γ— 10 4 𝑠𝑠 = 8.15 β„Žπ‘œπ‘œ 9. Estimate the sea level take-off distance on a paved runway. 𝑆𝑆 𝐿𝐿𝐿𝐿 = 1.44 π‘Šπ‘Š 2 /( π‘”π‘”πœŒπœŒπ‘†π‘†πΆπΆ 𝐿𝐿 , π‘šπ‘šπ‘Žπ‘Žπ‘šπ‘š { 𝑇𝑇 βˆ’ [ 𝐷𝐷 + πœ‡πœ‡ 𝑅𝑅 ( π‘Šπ‘Š βˆ’ 𝐿𝐿 )]} 𝑉𝑉 π‘Žπ‘Žπ‘Žπ‘Ž where 𝑉𝑉 π‘Žπ‘Žπ‘Žπ‘Ž = 0.7( 𝑉𝑉 𝐿𝐿𝐿𝐿 ) = 0.7 οΏ½ 1.2 οΏ½ 2 π‘Šπ‘Š π‘šπ‘šπ‘Žπ‘Žπ‘šπ‘š πœŒπœŒπ‘†π‘†πΆπΆ 𝐿𝐿 , π‘šπ‘šπ‘Žπ‘Žπ‘šπ‘š οΏ½ = 115.1 𝑓𝑓𝑓𝑓 / 𝑠𝑠 so 𝑆𝑆 𝐿𝐿𝐿𝐿 = 543.1 𝑓𝑓𝑓𝑓 (670 ft w/o ground effect) 10. Estimate the sea level landing roll distance assuming the plane is landing with a weight of 3000 lb and that lift is zero after touchdown. 𝑆𝑆 𝐿𝐿 = 1.69 π‘Šπ‘Š 2 /( π‘”π‘”πœŒπœŒπ‘†π‘†πΆπΆ 𝐿𝐿 , π‘šπ‘šπ‘Žπ‘Žπ‘šπ‘š [ 𝐷𝐷 + πœ‡πœ‡ π‘Ÿπ‘Ÿ ( π‘Šπ‘Š βˆ’ 𝐿𝐿 )] 0 . 7𝑉𝑉 𝑇𝑇 where 0.7 𝑉𝑉 𝑇𝑇 = 0.7(1.3 𝑉𝑉 π‘ π‘ π‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Ž ) = 0.7 οΏ½ 1.3 οΏ½ 2 π‘Šπ‘Š πœŒπœŒπ‘†π‘†πΆπΆ 𝐿𝐿 , π‘šπ‘šπ‘Žπ‘Žπ‘šπ‘š οΏ½ = 80.3 𝑓𝑓𝑓𝑓 𝑠𝑠 so 𝑆𝑆 𝐿𝐿 = 495.7 𝑓𝑓𝑓𝑓 11. Look up some interesting fact about this airplane and include that in your homework.
Name: HW5 Page 5 of 11 Jet Plane - Fairchild Republic A-10 Twin Jet Attack Aircraft The characteristics of this airplane are as follows: wing area = 47 m 2 ; aspect ratio = 6.5; Oswald efficiency factor = 0.88; Dry weight = 86 kN; zero-lift drag coefficient = 0.08; static thrust of each jet engine = 40 kN (at sea level); assume the engine thrust varies directly with free stream density; thrust-specific fuel consumption = 1.1 N of fuel per N of thrust per hour; fuel capacity = 49000 N; maximum gross weight = 135kN; C Lmax = 0.8 on take-off; wings are 5 ft off the ground during take-off roll; C Lmax = 2.8 on landing (with flaps). 1. Find a picture of this airplane online, copy and paste it into your homework and cite. 2. Plot the power required versus velocity curve for SLF at sea level. Use gross weight. 3. Determine the maximum velocity at sea level. 𝑉𝑉 π‘šπ‘šπ‘Žπ‘Žπ‘šπ‘š = ~185 π‘šπ‘š / 𝑠𝑠 4. Plot the power required versus velocity curve at 6 km altitude. 5. Determine the maximum velocity at 6 km altitude. 𝑉𝑉 π‘šπ‘šπ‘Žπ‘Žπ‘šπ‘š = ~153 π‘šπ‘š / 𝑠𝑠 6. Calculate the maximum rate of climb at sea level and at 6 km altitude. πœ‹πœ‹ . 𝐢𝐢 . π‘šπ‘šπ‘Žπ‘Žπ‘šπ‘š = ( 𝑃𝑃 𝐴𝐴 βˆ’ 𝑃𝑃 𝑅𝑅 )/ π‘Šπ‘Š 2 πœ‹πœ‹ . 𝐢𝐢 . 𝑆𝑆𝐿𝐿 = 40.1 π‘šπ‘š 𝑠𝑠 = 144 π‘˜π‘˜π‘šπ‘š β„Ž π‘Žπ‘Žπ‘šπ‘šπ‘Žπ‘Ž πœ‹πœ‹ . 𝐢𝐢 . 14π‘˜π‘˜ = 9.50 π‘šπ‘š 𝑠𝑠 = 34.2 π‘˜π‘˜π‘šπ‘š / β„Žπ‘œπ‘œ 7. Estimate the absolute ceiling of this airplane (assuming rate of climb varies linearly with altitude). From the R.C. calculations above, πœ‹πœ‹ . 𝐢𝐢 . ( β„Ž ) = 40 . 1βˆ’9 . 5 0βˆ’6 , 000 β„Ž + 40.1 [ π‘šπ‘š 𝑠𝑠 ] Extrapolating the πœ‹πœ‹ . 𝐢𝐢 . trend from above to find when πœ‹πœ‹ . 𝐢𝐢 . = 0, β„Ž π‘Žπ‘Žπ‘Žπ‘Žπ‘ π‘  β‰ˆ 7,860 π‘šπ‘š
Name: HW5 Page 6 of 11 8. Calculate the range and endurance of this aircraft at sea level. οΏ½ 𝐢𝐢 𝐿𝐿 1 2 𝐢𝐢 𝐷𝐷 οΏ½ π‘šπ‘šπ‘Žπ‘Žπ‘šπ‘š is needed for this calculation, and at that condition 𝐢𝐢 𝐷𝐷 , 0 = 3 𝐢𝐢 𝐷𝐷 , 𝑖𝑖 So 𝐢𝐢 ( 𝐷𝐷 , 0 ) = 3 𝐢𝐢 𝐿𝐿 2 πœ‹πœ‹πœ‹πœ‹πœ‹πœ‹πœ‹πœ‹ β†’ 0.08 = 3 ( 𝐢𝐢 𝐿𝐿 2 ) πœ‹πœ‹ (0.88)(6.5) β†’ 𝐢𝐢 𝐿𝐿 = 0.692241 𝐢𝐢 𝐷𝐷 = 0.08 + (0.692241) 2 πœ‹πœ‹ (0.88)(6.5) = 0.032 + 1 3 (0.032) = 0.106667 οΏ½ 𝐢𝐢 𝐿𝐿 1 2 𝐢𝐢 𝐷𝐷 οΏ½ π‘šπ‘šπ‘Žπ‘Žπ‘šπ‘š = 0.692241 1 2 0.106667 = 7.8 πœ‹πœ‹ π‘šπ‘šπ‘Žπ‘Žπ‘šπ‘š = 2 οΏ½ 2 πœŒπœŒπ‘†π‘† 1 𝑐𝑐 π‘Žπ‘Ž οΏ½ 𝐢𝐢 𝐿𝐿 1 2 𝐢𝐢 𝐷𝐷 οΏ½ π‘šπ‘šπ‘Žπ‘Žπ‘šπ‘š οΏ½π‘Šπ‘Š 0 1 2 βˆ’ π‘Šπ‘Š 1 1 2 οΏ½ = 2 οΏ½ 2 (1.225)(47) 3600 1.1 (7.8) οΏ½ (135000) 1 2 βˆ’ (86000) 1 / 2 οΏ½ = 706. π‘˜π‘˜π‘šπ‘š 𝐸𝐸 π‘šπ‘šπ‘Žπ‘Žπ‘šπ‘š = 1 𝑐𝑐 π‘Žπ‘Ž οΏ½ 𝐢𝐢 𝐿𝐿 𝐢𝐢 𝐷𝐷 οΏ½ π‘šπ‘šπ‘Žπ‘Žπ‘šπ‘š ln οΏ½ π‘Šπ‘Š 0 π‘Šπ‘Š 1 οΏ½ Where at 𝐢𝐢 𝐿𝐿 𝐢𝐢 𝐷𝐷 π‘šπ‘šπ‘Žπ‘Žπ‘šπ‘š , 𝐢𝐢 𝐷𝐷 , 0 = 𝐢𝐢 𝐷𝐷 , 𝑖𝑖 β†’ 0.08 = 𝐢𝐢 𝐿𝐿 2 πœ‹πœ‹πœ‹πœ‹π΄π΄π‘…π‘… = 𝐢𝐢 𝐿𝐿 2 πœ‹πœ‹ ( 0 . 88 )( 6 . 5 ) β†’ 𝐢𝐢 𝐿𝐿 = 1.199 And 𝐢𝐢 𝐷𝐷 = 𝐢𝐢 𝐷𝐷 , 0 + 𝐢𝐢 𝐷𝐷 , 𝑖𝑖 = 2 𝐢𝐢 𝐷𝐷 , 0 = 0.16 so οΏ½ 𝐢𝐢 𝐿𝐿 𝐢𝐢 𝐷𝐷 οΏ½ π‘šπ‘šπ‘Žπ‘Žπ‘šπ‘š = 1 . 199 0 . 16 = 7.49375 𝐸𝐸 π‘šπ‘šπ‘Žπ‘Žπ‘šπ‘š = 3600 1 . 1 (7.49375) ln οΏ½ 135000 86000 οΏ½ = 11100 𝑠𝑠 = 3.07 β„Žπ‘œπ‘œ 9. Estimate the sea level take-off distance on a paved runway. 𝑆𝑆 𝐿𝐿𝐿𝐿 = 1.44 π‘Šπ‘Š 2 /( π‘”π‘”πœŒπœŒπ‘†π‘†πΆπΆ 𝐿𝐿 , π‘šπ‘šπ‘Žπ‘Žπ‘šπ‘š { 𝑇𝑇 βˆ’ [ 𝐷𝐷 + πœ‡πœ‡ 𝑅𝑅 ( π‘Šπ‘Š βˆ’ 𝐿𝐿 )]} 𝑉𝑉 π‘Žπ‘Žπ‘Žπ‘Ž where 𝑉𝑉 π‘Žπ‘Žπ‘Žπ‘Ž = 0.7( 𝑉𝑉 𝐿𝐿𝐿𝐿 ) = 0.7 οΏ½ 1.2 οΏ½ 2 π‘Šπ‘Š πœŒπœŒπ‘†π‘†πΆπΆ 𝐿𝐿 , π‘šπ‘šπ‘Žπ‘Žπ‘šπ‘š οΏ½ = 0.7 οΏ½ 1.2 οΏ½ 2(135000) (1.225)(47)(0.8) οΏ½ = 64.3 π‘šπ‘š / 𝑠𝑠 So, using aerodynamic forces at this velocity (and modifying 𝐷𝐷 to include ground effect via eq. 6.99) 𝐢𝐢 𝐷𝐷 = 𝐢𝐢 𝐷𝐷 , 0 + πœ™πœ™ 𝐢𝐢 𝐿𝐿 2 πœ‹πœ‹πœ‹πœ‹πœ‹πœ‹πœ‹πœ‹ = 𝐢𝐢 𝐷𝐷 , 0 + ( 16β„Ž 𝑙𝑙 ⁄ ) 2 1 + ( 16β„Ž 𝑙𝑙 ⁄ ) 2 𝐢𝐢 𝐿𝐿 2 πœ‹πœ‹πœ‹πœ‹πœ‹πœ‹πœ‹πœ‹ = 0.08 + (16(1.524) (17.48) ⁄ ) 2 1 + (16(1.524) (17.48) ⁄ ) 2 (0.8) 2 πœ‹πœ‹ (0.88)(6.5) 𝐢𝐢 𝐷𝐷 = 0.103525 𝐷𝐷 = π‘žπ‘ž ∞ 𝑆𝑆𝐢𝐢 𝐷𝐷 = 1 2 (1.225)(64.3) 2 (47)(0.103525) = 12,321 𝑁𝑁 𝐿𝐿 = π‘žπ‘ž ∞ 𝑆𝑆𝐢𝐢 𝐷𝐷 = 1 2 (1.225)(64.3) 2 (47)(0.8) = 95,217 𝑁𝑁 𝑆𝑆 𝐿𝐿𝐿𝐿 = 1.44(135000) 2 /((9.81)(1.225)(47)(0.8){80000 βˆ’ [12,321 + 0.02(135000 βˆ’ 95,217)]} 𝑉𝑉 π‘Žπ‘Žπ‘Žπ‘Ž 𝑆𝑆 𝐿𝐿𝐿𝐿 = 868 π‘šπ‘š (887 π‘šπ‘š π‘€π‘€π‘šπ‘šπ‘“π‘“β„Ž π‘šπ‘šπ‘œπ‘œ π‘”π‘”π‘œπ‘œπ‘œπ‘œπ‘œπ‘œπ‘šπ‘šπ‘Žπ‘Ž πœ‹πœ‹π‘“π‘“π‘“π‘“πœ‹πœ‹π‘π‘π‘“π‘“ ) 10. Estimate the sea level landing roll distance assuming the plane is landing with its full gross weight of 135 kN with i) C Lmax and that ii) spoilers make C Lmax =0 after touchdown. 𝑆𝑆 𝐿𝐿 = 1.69 π‘Šπ‘Š 2 /( π‘”π‘”πœŒπœŒπ‘†π‘†πΆπΆ 𝐿𝐿 , π‘šπ‘šπ‘Žπ‘Žπ‘šπ‘š [ 𝐷𝐷 + πœ‡πœ‡ π‘Ÿπ‘Ÿ ( π‘Šπ‘Š βˆ’ 𝐿𝐿 )] 0 . 7𝑉𝑉 𝑇𝑇
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help
Name: HW5 Page 7 of 11 where 0.7 𝑉𝑉 𝑇𝑇 = 0.7(1.3 𝑉𝑉 π‘ π‘ π‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Ž ) = 0.7 οΏ½ 1.3 οΏ½ 2 π‘Šπ‘Š πœŒπœŒπ‘†π‘†πΆπΆ 𝐿𝐿 , π‘šπ‘šπ‘Žπ‘Žπ‘šπ‘š οΏ½ = 32.53 π‘šπ‘š 𝑠𝑠 𝐷𝐷 = π‘žπ‘ž ∞ 𝑆𝑆𝐢𝐢 𝐷𝐷 = π‘žπ‘ž ∞ 𝑆𝑆 �𝐢𝐢 𝐷𝐷 , 0 + 𝐢𝐢 𝐿𝐿 2 πœ‹πœ‹πœ‹πœ‹πœ‹πœ‹πœ‹πœ‹ οΏ½ = 1 2 (1.225)(32.3) 2 (47) οΏ½ 0.08 + (2.8) 2 πœ‹πœ‹ (0.88)(6.5) οΏ½ = 15,506 𝑁𝑁 so with ground effect and 𝐿𝐿 = 0 after touchdown 𝑆𝑆 𝐿𝐿 = 1.69(86000) 2 /((9.81)(1.225)(47)(2.8)[15,506 + (0.4)(86000)] 0 . 7𝑉𝑉 𝑇𝑇 𝑆𝑆 𝐿𝐿 = 158 π‘šπ‘š empty or 280 m fully fueled. 11. Look up some interesting fact about this airplane and include that in your homework.
Name: HW5 Page 8 of 11 12. Consider a wing-body combination, having a planform area of 3 m 2 and a chord length of 1 m, flying at a standard altitude of 3.0 km and a speed of 70 m/s. At an absolute angle of attack of zero, the moment about its center of gravity is -35 NΒ·m. When the vehicle pitches up 10Β° from this condition, the lift force and moment about the center of gravity are 6,000 N and +30 NΒ·m, respectively. Is this wing-body statically stable? (Explain why or why not, with numbers. That the zero-lift moment is negative is sufficient to conclude that it can’t be longitudinally balanced even if it is stable. Strictly speaking, we should look at the slope if we’re interested specifically in stability (although points will not be deducted if you stopped after the above reasoning). From Appendix A, 𝜌𝜌 ∞ = 0.90926 π‘˜π‘˜π‘˜π‘˜ π‘šπ‘š 3 At 𝛼𝛼 π‘Žπ‘Ž = 0Β°, we have zero lift and therefore the moment about the aerodynamic center is the same as the moment about the center of gravity: 𝐢𝐢 𝑀𝑀 , π‘Žπ‘Žπ‘Žπ‘Ž , π‘€π‘€π‘Žπ‘Ž = 𝐢𝐢 𝑀𝑀 , π‘Žπ‘Žπ‘˜π‘˜ ( 𝛼𝛼 π‘Žπ‘Ž = 0) = 𝑀𝑀 π‘Žπ‘Žπ‘˜π‘˜ 1 2 𝜌𝜌 ∞ 𝑉𝑉 ∞ 2 𝑆𝑆𝑐𝑐 = βˆ’ βˆ’ 35 1 2 (0.90926)(70) 2 (3)(1) = βˆ’ 0.005237 At 𝛼𝛼 π‘Žπ‘Ž = 10Β°, 𝐢𝐢 𝐿𝐿 ( 𝛼𝛼 π‘Žπ‘Ž = 10Β°) = 𝐿𝐿 1 2 𝜌𝜌 ∞ 𝑉𝑉 ∞ 2 𝑆𝑆 = 6,000 1 2 (0.90926)(70) 2 (3) = 0.8978 π‘Žπ‘Ž π‘€π‘€π‘Žπ‘Ž = 0.8978 10Β° = 0.08978 π‘π‘πœ‹πœ‹π‘œπ‘œ Β° 𝐢𝐢 𝑀𝑀 , π‘Žπ‘Žπ‘˜π‘˜ ( 𝛼𝛼 π‘Žπ‘Ž = 10Β°) = 𝑀𝑀 π‘Žπ‘Žπ‘˜π‘˜ 1 2 𝜌𝜌 ∞ 𝑉𝑉 ∞ 2 𝑆𝑆𝑐𝑐 = βˆ’ 30 1 2 (0.90926)(70) 2 (3)(1) = 0.004489 It is clear from inspection of the moment coefficients that the moment coefficient has a positive derivative with respect to angle of attack, indicating that the wing-body is unstable. (A slight increase in Ξ± will make the moment more positive, tending to increase Ξ± even further; and vice versa for a decrease in Ξ± .) We can calculate this derivative explicitly if we wish: 𝐢𝐢 𝑀𝑀 , π‘Žπ‘Žπ‘˜π‘˜ , π‘€π‘€π‘Žπ‘Ž = 𝐢𝐢 𝑀𝑀 , π‘Žπ‘Žπ‘Žπ‘Ž , π‘€π‘€π‘Žπ‘Ž + π‘Žπ‘Ž π‘€π‘€π‘Žπ‘Ž 𝛼𝛼 π‘Žπ‘Ž οΏ½β„Ž βˆ’ β„Ž π‘Žπ‘Žπ‘Žπ‘Ž , π‘€π‘€π‘Žπ‘Ž οΏ½ 0.004489 = βˆ’ 0.005237 + 0.08978(10Β°) οΏ½β„Ž βˆ’ β„Ž π‘Žπ‘Žπ‘Žπ‘Ž , π‘€π‘€π‘Žπ‘Ž οΏ½ β„Ž βˆ’ β„Ž π‘Žπ‘Žπ‘Žπ‘Ž , π‘€π‘€π‘Žπ‘Ž = 0.01083 πœ•πœ•πΆπΆ 𝑀𝑀 , π‘Žπ‘Žπ‘˜π‘˜ , π‘€π‘€π‘Žπ‘Ž πœ•πœ•π›Όπ›Ό π‘Žπ‘Ž = π‘Žπ‘Ž π‘€π‘€π‘Žπ‘Ž ( β„Ž βˆ’ β„Ž π‘Žπ‘Žπ‘Žπ‘Ž , π‘€π‘€π‘Žπ‘Ž ) = 9.726 Γ— 10 βˆ’4 > 0 Positive sloping moment coefficient indicates longitudinal statically unstable behavior. (A slight increase in 𝛼𝛼 makes the moment more positive , tending to increase 𝛼𝛼 even further, and vice versa for a decrease in 𝛼𝛼 ).
Name: HW5 Page 9 of 11 13. We wish to add a tail to the wing-body from problem #2 such that the static margin will be 0.5. If the tail has a lift slope of 0.08 per degree and can be placed a maximum of 3 m from the vehicle's center of gravity, what is the smallest tail planform area that can achieve this? Neglect downwash from the wings (i.e., Ξ΅ ≑ 0). We want static margin, β„Ž βˆ’ β„Ž 𝑛𝑛 = 0.5 πœ•πœ•πΆπΆ 𝑀𝑀 , π‘Žπ‘Žπ‘˜π‘˜ πœ•πœ•π›Όπ›Ό π‘Žπ‘Ž = βˆ’π‘Žπ‘Ž π‘€π‘€π‘Žπ‘Ž ( β„Ž βˆ’ β„Ž 𝑛𝑛 ) = βˆ’ 0.08978(0.5) = βˆ’ 0.04489 π‘π‘πœ‹πœ‹π‘œπ‘œ Β° πœ•πœ•πΆπΆ 𝑀𝑀 , π‘Žπ‘Žπ‘˜π‘˜ πœ•πœ•π›Όπ›Ό π‘Žπ‘Ž = π‘Žπ‘Ž π‘€π‘€π‘Žπ‘Ž οΏ½β„Ž βˆ’ β„Ž π‘Žπ‘Žπ‘Žπ‘Ž , π‘€π‘€π‘Žπ‘Ž βˆ’ 𝑉𝑉 𝐻𝐻 π‘Žπ‘Ž π‘Žπ‘Ž π‘Žπ‘Ž οΏ½ βˆ’ 0.04489 = 0.08978 οΏ½ 0.01083 βˆ’ 𝑉𝑉 𝐻𝐻 0.08 0.08978 οΏ½ 𝑉𝑉 𝐻𝐻 = 0.5733 𝑉𝑉 𝐻𝐻 = 𝑙𝑙 π‘Žπ‘Ž 𝑆𝑆 π‘Žπ‘Ž 𝑐𝑐𝑆𝑆 = 0.5733 = 3 𝑆𝑆 π‘Žπ‘Ž (1)(3) β†’ 𝑆𝑆 π‘Žπ‘Ž = 0.5733 π‘šπ‘š 2
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help
Name: HW5 Page 10 of 11 14. For zero elevator deflection, we desire for the vehicle from problem #2 to be statically stable with an equilibrium angle of attack of 3Β°. Still neglecting downwash, what tail setting angle is necessary to achieve this? The equilibrium angle of attack is where the moment coefficient is zero. 𝐢𝐢 𝑀𝑀 , π‘Žπ‘Žπ‘˜π‘˜ = 𝐢𝐢 𝑀𝑀 , 0 + πœ•πœ•πΆπΆ 𝑀𝑀 , 0 πœ•πœ•π›Όπ›Ό π‘Žπ‘Ž 𝛼𝛼 πœ‹πœ‹ = 0 𝐢𝐢 𝑀𝑀 , 0 = βˆ’ πœ•πœ•πΆπΆ 𝑀𝑀 , π‘Žπ‘Žπ‘˜π‘˜ πœ•πœ•π›Όπ›Ό π‘Žπ‘Ž 𝛼𝛼 πœ‹πœ‹ = 0.04489(3) = 0.1347 𝐢𝐢 𝑀𝑀 , 0 = 𝐢𝐢 𝑀𝑀 , π‘Žπ‘Žπ‘Žπ‘Ž , π‘€π‘€π‘Žπ‘Ž + 𝑉𝑉 𝐻𝐻 π‘Žπ‘Ž π‘Žπ‘Ž π‘šπ‘š π‘Žπ‘Ž 0.1347 = βˆ’ 0.005237 + 0.5733(0.08)( π‘šπ‘š π‘Žπ‘Ž ) π‘šπ‘š π‘Žπ‘Ž = +3.05Β°, π‘šπ‘š π‘Žπ‘Ž π‘šπ‘šπœ‹πœ‹π‘Žπ‘Žπ‘ π‘ π‘œπ‘œπ‘œπ‘œπœ‹πœ‹π‘Žπ‘Ž π‘Žπ‘Žπ‘œπ‘œπ‘€π‘€π‘šπ‘šπ‘€π‘€π‘Žπ‘Žπ‘œπ‘œπ‘Žπ‘Ž π‘“π‘“π‘œπ‘œπ‘œπ‘œπ‘šπ‘š π‘€π‘€π‘šπ‘šπ‘šπ‘šπ‘”π‘” βˆ’ π‘™π‘™π‘œπ‘œπ‘Žπ‘Žπ‘π‘ π‘§π‘§πœ‹πœ‹π‘œπ‘œπ‘œπ‘œ π‘™π‘™π‘šπ‘šπ‘“π‘“π‘“π‘“ π‘™π‘™π‘šπ‘šπ‘šπ‘šπœ‹πœ‹
Name: HW5 Page 11 of 11 15. Suppose we now wish to operate the vehicle from problem #3 at an angle of attack of 5Β°. If the elevator control effectiveness is 0.04, what elevator deflection angle will trim the vehicle for this flight condition? 𝐢𝐢 𝐿𝐿 , π‘€π‘€π‘Žπ‘Ž = π‘Žπ‘Ž π‘€π‘€π‘Žπ‘Ž 𝛼𝛼 π‘€π‘€π‘Žπ‘Ž = 008978(5Β°) = 0.4489 At equilibrium, 𝐢𝐢 𝑀𝑀 , π‘Žπ‘Žπ‘˜π‘˜ = 𝐢𝐢 𝑀𝑀 , π‘Žπ‘Žπ‘Žπ‘Ž , π‘€π‘€π‘Žπ‘Ž + 𝐢𝐢 𝐿𝐿 , π‘€π‘€π‘Žπ‘Ž οΏ½β„Ž β„Ž π‘Žπ‘Žπ‘Žπ‘Ž , 𝑀𝑀𝑀𝑀 οΏ½ βˆ’ 𝑉𝑉 𝐻𝐻 οΏ½π‘Žπ‘Ž π‘Žπ‘Ž 𝛼𝛼 π‘Žπ‘Ž + πœ•πœ•πΆπΆ 𝐿𝐿 , π‘Žπ‘Ž πœ•πœ•π›Ώπ›Ώ πœ‹πœ‹ 𝛿𝛿 πœ‹πœ‹ οΏ½ = 0 0 = βˆ’ 0.005237 + 0.4489(0.01083) βˆ’ 0.5733[0.08(5Β° βˆ’ 3.05Β°) +). 04 𝛿𝛿 πœ‹πœ‹ ] So 𝛿𝛿 πœ‹πœ‹ = βˆ’ 3.92Β°